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Despite considerable effort over a century and the benefit of

remarkable technical advances in the past few decades, we are

still far from understanding mammalian cerebral neocortex.

With its six layers, modular architecture, canonical circuits,

innumerable cell types, and computational complexity,

isocortex remains a challenging mystery. In this review, we

argue that identifying the structural and functional similarities

between mammalian piriform cortex and reptilian dorsal cortex

could help reveal common organizational and computational

principles and by extension, some of the most primordial

computations carried out in cortical networks.
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Introduction
Despite considerable effort over a century and the benefit

of remarkable technical advances in the past few decades,

we are still far from understanding mammalian cerebral

cortex. With its six layers, modular architecture, canonical

circuits [1], innumerable cell types [2], and computational

complexity [3], isocortex remains a challenging mystery.

Isocortex most likely evolved from simpler layered cir-

cuits in the forebrain of ancestral amniotes, structures that

we still find in mammals today, as paleo-cortices and

archi-cortices (piriform and hippocampal formations,

respectively), together with a few ‘transitional’ areas with

n (3 � n < 6) layers [4].

Among three-layered cortices in mammals, piriform cor-

tex (PCx) is a good model system to investigate the

function, dynamics and computational properties of cor-

tical circuits. Understanding piriform cortex function,

however, is made difficult by the complexity of the

sensory space it subserves and the current lack of common
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metrics to describe the relevant psychophysical dimen-

sions of olfactory perception [5].

Simple cortices are not limited to the olfactory system. In

reptiles, the entire cerebral cortex is composed of only

three layers and some of these cortices are primary

sensory areas. The visual cortex of turtles (dorsal cortex,

DCx) and the mammalian piriform cortex (PCx) hold very

similar positions along their respective sensory pathways.

They are just one processing station — the lateral genicu-

late nucleus (LGN), or the olfactory bulb (OB) —

removed from their respective sense organ. Our current

understanding of sensory processing in turtle visual cortex

is still limited, but one notable advantage of this system is

that its sensory input space is more easily defined.

Hodology and transcription factor expression during de-

velopment suggest that the three layers of reptilian cortex

may be homologous to layers 1, 5, and 6 of the mammalian

isocortex [6]. In this review, we argue that identifying the

structural and functional similarities between PCx and

DCx could help reveal common organizational and com-

putational principles and by extension, some of the most

primordial computations carried out in cortical networks.

Vertical connectivity
The architecture of PCx and DCx is archetypal of a three-

layered paleocortex. Layer 1 contains mainly dendrites of

layer 2 principal cells, a few scattered interneurons and

afferent and local axons. Layer 2 contains the densely

packed somata of pyramidal cells, whose apical dendrites

run radially toward the pial surface. Layer 3 contains basal

dendrites of pyramidal cells, corticofugal and local axons,

some interneurons and a few deep pyramidal neurons in

PCx [7,8]. Incoming afferents to PCx run through the

lateral olfactory tract (LOT) [9�]; those to DCx through

the lateral forebrain bundle (LFB) [10]. These input

fibers fan out below the pial surface and make en-passant

synapses on cortical neurons within the distal 50–100 mm

of layer 1 [11,12]. Afferent synapses impinge on both

layer-1 interneurons and on distal dendrites of layer-2

pyramidal cells; interneurons provide both feed-forward

and feedback inhibition to pyramidal cells which them-

selves provide recurrent excitation to other pyramidal

neurons [12,13�,14�,15,16]. In both PCx and DCx, super-

ficial layer-1 interneurons tend to receive a higher density

of afferent input than pyramidal cells do [12,14�,17�]
which, combined with a strong feed-back inhibition via

layer-2/3 interneurons [14�,15,17�] may explain the

observed strong inhibition evoked by sensory stimulation
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Connectivity in mammalian piriform cortex (PCx) and turtle dorsal cortex (DCx). (a) Transverse view (see inset) of the basic microcircuits. Sensory

afferents from the lateral olfactory tract (in PCx) or lateral forebrain bundle (in DCx) make en-passant synapses in superficial layer 1 on distal segments

of layer-2 pyramidal cell dendrites and on superficial inhibitory interneurons. Layer-2 pyramidal neurons receive recurrent excitation from other

pyramidal cells (associational connectivity), feed-forward inhibition from superficial interneurons (FF), and feed-back inhibition from layer-2/3

interneurons (FB). (b) Top view (see inset) of PCx and DCx connectivity. Afferents from the olfactory bulb (OB) project to PCx without apparent

topographical order. In DCx, there may be a coarse topography of lateral geniculate nucleus (LGN) projections that preserves visual isoazimuth

neighborhoods [10,40]. In both cases, recurrent excitation through local (gray) and long-range (not shown) associational connections contributes to

broadening the stimulus selectivity of pyramidal cells and may mask any local anisotropy in the spatial distribution of the primary sensory afferents (see

color tiles).
and the sparseness of pyramidal cell firing. To a first

degree, PCx and DCx thus have a similar microcircuit

layout: both exhibit distal dendritic excitation from sen-

sory afferents, strong feed-forward inhibition, recurrent

excitation through the so-called associational intracortical

connections, and feed-back inhibition [18,19�] (Figure 1a).

Different cell types have been identified in PCx. Most

segregate into specific sublayers of the piriform micro-

circuit. Excitatory neurons in layer 2 can be subdivided in

semilunar (upper layer 2) and superficial pyramidal

neurons (lower layer 2) while those in layer 3 comprise

a few deep pyramidal cells and scattered multipolar spiny

glutamatergic neurons [20–22]. Although they are

embedded in the same basic connectivity scheme, semi-

lunar and superficial pyramidal cells receive different

ratios of afferent to associational inputs, and may thus

belong to distinct functional subcircuits [13�] (but see

[23�]), consistent with morphological differences be-

tween their dendritic trees and their laminar position

[24]. Although data on subpopulations of principal cells

in DCx are few, analysis of Golgi-stained material also

revealed different morphological classes of spiny neurons

at different laminar and sublaminar positions in reptilian
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cortex [25,26�]. PCx and DCx pyramidal neurons are also

similar with respect to their dendritic electrophysiological

properties, suggesting comparable integrative properties

at the subcellular level [27�,28]. Different subtypes of

inhibitory interneurons have been identified in PCx,

based on molecular markers, the morphology of their

dendritic arbor and the distribution of their axonal pro-

jections (reviewed in [29]). These subclasses seem to

correlate with the type of inhibition they subserve, that

is, primarily feedback or feed-forward. Horizontal and

neurogliaform interneurons in layer 1 receive afferent

inputs from the LOT and mediate fast feed-forward

inhibition targeting apical dendrites of layer-2 pyramidal

cells. Bitufted, fast-spiking and regular spiking inter-

neurons from layers 2 and 3 receive very little direct

afferent input from the LOT but provide strong feed-

back inhibition onto the somata and basal dendrites of

pyramidal cells [14�,17�]. Similarly, different populations

of inhibitory interneurons in turtle DCx subserve mainly

feed-forward (subpial cells [16]) or feedback [16,30] inhi-

bition. Axonal reconstructions of DCx interneurons [31]

and immunocytochemical labeling [32,33] suggest the

existence of morphologically and physiologically ident-

ifiable classes of inhibitory interneurons. It remains to be
www.sciencedirect.com
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shown that those groupings also share functional sim-

ilarities with those in PCx. Given the anatomical sim-

ilarity of input projections to PCx and DCx, one may

speculate that the inhibitory circuit topology of these two

cortices could also be similar.

Horizontal connectivity
In PCx, afferents from mitral/tufted (MT) cells appear to

project throughout the cortex without any clear topogra-

phical relationship to their glomeruli of origin

[9�,34�,35,36,37�] (Figure 1b). Although this does not rule

out the possibility of some fine-scale topographical map-

ping of OB projections (e.g. mitral versus tufted cell

projections [38�]), it is now accepted that the glomerular

clustering of olfactory receptor cells axons in OB is

entirely discarded at the level of PCx [39]. In DCx, early

tracing studies from Ulinski and colleagues suggested

that the visual field is projected onto the rostro-caudal

axis of DCx in the form of iso-azimuth lamellae covering

the naso-temporal dimension of the visual field [10,40]

(Figure 1b). Such a mapping of projections still awaits

physiological confirmation and fine thalamo-cortical pro-

jection tracing. If confirmed, this topographical mapping

would differ from the topology of mammalian olfactory

projections to PCx, at least along one cortical dimension.

In both PCx and DCx, the density of sensory afferents

varies over the cortical surface: high rostrally and laterally,

it decreases progressively as one moves away from the

entry point of the LOT (PCx) or the LFB (DCx). Hence,

the balance between afferent and associational connec-

tivity decreases along the rostro-caudal and latero-medial

(or ventro-dorsal) axes [10,18,39,41,42]. PCx is subdi-

vided into anterior (aPCx) and posterior (pPCx) regions,

which differ not only in the density of afferent versus

associational fibers [18] but also in the properties of odor-

evoked responses [43,44]. PCx microcircuits may also

contain fine-grain connectivity gradients: in vitro record-

ings from aPCx reveal that inhibition of pyramidal cells is

asymmetric and stronger along the rostro-caudal axis of

the anterior part of PCx, over distances as short as 200 mm

[45�]. In turtle, DCx has been classically divided into two

different regions (D2 and D1) along the latero-medial axis

[8,26�]. This dichotomy rests mostly on cytoarchitectural

features, related to the thickness of subcellular layer 3 —

thick in D2 laterally, thin in D1, with a significant

transition zone between the two. Recent molecular data

suggest that this separation may be correlated with higher

expression level of layer-4 markers in D2 [46�]. Confir-

mation of this division and of its potential functional

significance needs additional work. Such gradients of

connectivity across the cortical surface (in PCx and

DCx) should be clearly described because any horizontal

heterogeneity could influence the propagation and rever-

beration of activity across cortex, under the combined

influences of spreading afferent input and widespread

associational activity.
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Given their reciprocal interconnections with high-order

cortical areas and a lack of evident sensory topography,

PCx and DCx are sometime described as associational

rather than primary sensory cortices [18,19�]. The major

partners of PCx are the orbitofrontal cortex [47,48], the

lateral entorhinal cortex [49,50] and the agranular insular

cortex [50]. Connectivity to these downstream targets

differs between aPCx and pPCx, supporting the notion

that they play different functions. Similarly, DCx is

reciprocally connected to dorso-medial (DMCx) and

medial (MCx) cortices [25,26�]. Those regions are, on

the basis of hodology and position, often compared to

parahippocampal and hippocampal cortices

[26�,51,52,53]. Both PCx and DCx are thus directly con-

nected to associational networks, likely involved in con-

trolling or modulating behavior.

PCx and DCx are further interconnected with other

cortical-like areas, which also receive parallel sensory

afferents from the OB or the LGN respectively. For

PCx, these include the anterior olfactory nucleus

(AON) [54,55], the olfactory tubercle (OT) [54], and

the amygdala [50,56]. AON might be a first stage of

odorant-feature processing, in turn used by PCx to detect

complex odorant combinations [18,57,58]. DCx’s AON-

equivalent could be the pallial thickening (PT), for it

receives direct thalamic afferent input and projects to

DCx [10,59]. If AON and PT also share functional

characteristics, these similarities may point to common

elementary processing streams of three-layered sensory

cortices.

Coding and sensory representation
To a first degree, functional investigations of olfactory

tuning on PCx neurons confirm anatomical results: the

discretization of the olfactory bulb into glomerular

domains disappears in PCx. Instead, odorants activate

ensemble of PCx neurons, scattered over the cortical

surface, with no apparent spatial clustering

[35,60�,61,62�]. Both the dispersion of afferent bulbar

inputs and a widespread network of associational connec-

tions likely contribute to the spatial spread and hetero-

geneity of PCx-neuron response selectivity [23�,63,64�].
This lack of visible organization of population responses

is similar to that observed in the insect mushroom body, a

structure directly postsynaptic to the antennal lobe, itself

analogous to the olfactory bulb [65]. It may thus be a deep

feature of this early encoding stage for odors [66].

A similar situation seems to hold true for DCx, although

studies of RF mapping in turtle DCx are few [67]. In all

such experiments, most cells were activated indiscrimi-

nately wherever a stimulus (typically a small dot) was

flashed in the visual field, unlike thalamic neurons

which exhibit spatially restricted RFs [68]. Voltage-

sensitive-dye (VSD) recordings of DCx responses to

stimulation of four visual quadrants yielded similar
Current Opinion in Neurobiology 2015, 31:119–126
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activity patterns across the cortical surface, consistent

with the absence of clear retinotopic mapping of visual

space along the surface of DCx [69]. Although VSD

experiments reveal no functional evidence for the ana-

tomical lamellae of thalamo-cortical projections [10],

they do not necessarily disprove the older tracing stu-

dies. For example, widespread associational connec-

tions could easily mask the topography of thalamo-

cortical projections.

If true, the absence of cortical retinotopy in DCx suggests

a few remarks. (i) That three-layered reptilian visual

cortex is not organized along the same principles as

mammalian primary visual isocortex. (ii) That projections

to a sensory three-layered cortex lack the functional,

developmental or molecular substrates for spatial or func-

tional segregation. Some have indeed argued that this

diffuse organization represents the primordial structure of

sensory cortex, prior to the evolution of isocortex in the

synapsid and later, mammalian lineage [6]. (iii) That the

computational properties of turtle primary visual cortex

are more similar in essence to those of high-order cortices

(e.g. parahippocampal, retrosplenial or infero-temporal),

and that the true response properties of DCx neurons

have yet to be discovered.

Until recently, functional experiments in PCx relied on

sampling neuronal responses to limited sets of odors.

Although these studies spanned stimulus sets large

enough to identify the dispersion of RF selectivity across

the cortical surface, they did not allow an evaluation of

the actual ‘size’ of these RFs along the many dimensions

of odor space. Recent studies examined how PCx process

patterns of activity in the bulb by direct stimulation of

ensembles of glomeruli using photo-uncaging of gluta-

mate [64�] or optogenetic stimulation [70�]. These stu-

dies indicate that individual PCx neurons respond

selectively to distinct combinations of active glomeruli

[64�] and are sensitive to the temporal sequence of

activation [70�]. A more exhaustive exploration of this

sensory space might allow one to better estimate the

selectivity of PCx RFs, thereby facilitating comparisons

with DCx. Although both PCx and DCx clearly exhibit

no mapping of the first-order physical dimensions of their

respective sensory space, they may both represent sen-

sory features in some abstract and related feature spaces

[39]. Mazurskaya [67] observed that, although DCx

visual neurons respond unselectively to any flash of light,

they may respond to pairs of flashes with sublinear or

supralinear summation depending on the relative timing

and spatial separation of the two stimuli, suggesting

selectivity to high-order spatiotemporal correlations in

the visual field. It could be that DCx neurons are se-

lective to high-order correlations, and process spatio-

temporal sequences of distributed visual cues in a man-

ner similar to how PCx processes spatio-temporal acti-

vation of specific glomeruli.
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Cortical dynamics and oscillations
As observed in many sensory systems, PCx and DCx

exhibit various types of oscillations. In PCx, these oscil-

lations are usually split into 3 frequency bands: slow

respiratory theta rhythm (1–15 Hz); beta (15–35 Hz);

and gamma (40–100 Hz) [71]. Although gamma has long

been a focus of research in mammalian cortex, beta

oscillations have, over recent years, grown in importance

in olfactory studies. Interestingly, 20-Hz oscillations are a

prominent feature of population activity also in some

insect species [66]. Sensory-evoked LFP responses in

DCx and PCx both exhibit a noticeable increase in

beta-frequency oscillations following sensory stimulation

in both anaesthetized and awake cortical states

[72,73�,74–76]. It is currently difficult to assess whether

beta oscillations in PCx and DCx share more than just a

frequency and if they contribute to information proces-

sing in similar ways. The similarity, however, may be

linked to common underlying mechanisms of generation.

Except for the fact that beta oscillations in OB precede

those in PCx and hippocampus [72,74,77] but require

intact feedback between PCx and OB [78], we know little

about the mechanistic origin and role of beta. Beta power

in PCx appears correlated with behavioral context; it

increases during learning of a discrimination task

[73�,79] and is correlated with pattern completion

[73�]. In DCx, visually evoked beta oscillations appear

to be coherent across the surface of DCx, with a rostro-

caudal phase-lag consistent with the propagation of waves

[75,80]. It was suggested that some components of these

waves may encode spatial information about the stimulus

[69,81]. However, physiological data are still missing, and

whether cortical waves in DCx are reliable enough to

represent efficiently the spatiotemporal position of visual

cues (or any other feature) remains conjectural.

Beta coherence has been investigated across different

areas of PCx. Available data suggest rather short delays

over long cortical distances between paired recording

sites [62�,72,77,82]. Nevertheless, the issue as to whether

(and how) these oscillations propagate through the piri-

form network remains largely unexplored. Coherent beta

oscillations between different olfactory areas have been

observed, especially during odor learning and memory

retrieval [79,83]. Theoretical work showed that beta

frequencies are better suited than gamma oscillations

to carry information over long distances [84]. This

suggests that beta could contribute to synchronizing

the activity of PCx with downstream targets. Assuming

similarly distributed codes for PCx and DCx, beta oscil-

lations might serve to support the formation of cell

assemblies across their respective networks, synchroniz-

ing neurons by stimulus selectivity rather than position.

Such role would probably require phase-locking of odor-

evoked spiking to beta oscillations, to enable a concerted

influence on downstream targets. Poo and Isaacson [62�]
showed that PCx neurons responses are phase-locked to
www.sciencedirect.com
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beta oscillations as a result of a phase shift between

excitatory and inhibitory synaptic drives. The preferred

phase of firing was apparently cell-specific rather than

stimulus-specific. More work is needed to elucidate

whether or not cells with similar odor selectivity tend

to have similar phase relationship to the beta oscillation

cycle.

Conclusion
Piriform cortex and turtle dorsal cortex are good model

systems to investigate sensory processing in cortical cir-

cuits; given their simple architecture, the mapping of

elementary computations on specific circuit elements

should be easier than with isocortex. Unfortunately, how-

ever, we have no clear understanding of the exact func-

tional operations performed by these two cortices. PCx

and DCx seem to process sensory inputs more like high-

order cortical areas than primary sensory neocortex.

According to this view, if we assume that the three-

layered cortex of extant amniotes conserved functional

features of the cortex of early amniotes (some 300 MYA),

we would conclude that computations performed by high-

order cortical areas are ancestral rather than evolved and

that many operations found at initial stages of neocortical

processing (first-order feature detection, local contrast

enhancement,. . .) appeared later in evolution, possibly

linked to the additions of new layers (2/3,4), specific to

mammalian neocortex. Despite obvious differences be-

tween visual and olfactory signals, sensory coding in PCx

and DCx might follow a similar functional logic, focused

on behaviorally relevant features. Haberly [18] postulated

that PCx may function as a combinatorial/associative

array, performing recognition of OB activity patterns

encoded in specific cortical cell assemblies that may

contribute, after reinforcement, to memory formation

and recall of relevant sensory experiences. Experimental

evidence shows that functional connectivity in PCx is

modified during associative learning [44,73�,78,79,85,86].

Similarly, lesion experiments in turtles suggest a role for

dorsal and medial cortices in spatial learning and memory

formation [52,87,88]. Visual processing in DCx might

thus be closer to that in mammalian parahippocampal

[89] or retrosplenial cortices [90]. Haberly [18] proposed

that the topology and plasticity of PCx afferent and auto-

associational connections are well suited to perform con-

textual learning of high-dimensional stimulus features.

Plasticity has not yet been explored in DCx. But if DCx

reveals experience-dependent changes in its functional

connectivity, it would be an additional argument for

considering PCx and DCx as equivalent networks, opti-

mized for object recognition in a sensory landscape (made

of odors or visual cues) whose relevant perceptual dimen-

sions are dynamically shaped by sensory experience.
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