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when an expert follows an axon through 3D serial blockface EM 
(SBEM1) data from mouse cortex (Fig. 1c). Under less optimal 
bandwidth and latency conditions (as are often experienced by 
student annotators at home and in mobile settings), however, 
reconstruction speed drops to 59–88 µm/h (measured for regu-
lar 3G connectivity and for transcontinental access, Fig. 1c).

webKnossos (Fig. 1d, https://webknossos.org) uses 3D data stor-
age and transmission in small cubic packages of 323 vx (Fig. 1b).  
Cubic 3D image data storage using cubes of 1283 vx is being 
employed in KNOSSOS8 and pyKNOSSOS9,10, standalone data 
annotation applications for connectomics. We reduced 3D cube 
size to 323 vx for lag-free in-browser data transmission and for 
enabling the flight-mode data visualization introduced below. 
webKnossos enables data interaction in 3D EM images dis-
played in orthogonal planes (Fig. 1d) at a speed of about 2 mm/h  
(Fig. 1c), which drops to 0.7–1.2 mm/h for regular 3G connec-
tivity and transcontinental annotation (Fig. 1c). Thus, 3D data 
visualization when following an axon is about 4-fold faster under 
ideal and up to 13-fold faster under nonoptimal connectivity  
settings than with existing in-browser tools (Fig. 1c).

We next tested whether student annotators can be trained to 
interact with 3D brain image data at such speeds. Previously, 
annotators interacted with the image data using orthogonal 
image projections in the three cardinal planes for following 
the neuronal processes and for their annotation as ‘skeletons’  
(Fig. 1d,e, ‘ortho mode’, KNOSSOS8). Effective tracing speed was  
100–270 µm/h4,8,10–12 for reconstructions in mouse retina, 
zebrafish olfactory bulb and mouse cortex. We asked whether 
annotators can be trained to annotate faster in ortho mode, and 
whether a more intuitive data presentation can further accelerate 
human annotation. For the latter, we developed ‘flight mode’, in 
which the 3D image data are sampled on a hemisphere centered 
at the annotator’s current position (Fig. 1f). To enable such non-
orthogonal data transmission and display in browser, we used 
(in addition to the small 3D cube size (Fig. 1b)) a simple form 
of path prediction (the data being loaded in a stump in direction 
of flight; Fig. 1g). Flight mode requires the EM image data to be 
sufficiently well aligned in 3D, as is routinely the case for neuronal 
tissue imaged using SBEM1. In flight mode, the annotator focuses 
on centering the target cursor onto the axon or dendrite being fol-
lowed, steering the orientation with the mouse or keyboard while 
moving forward (Supplementary Video 1). We suspected that 
this focusing on one intuitive egocentric visualization and inter-
action may accelerate annotation, since the user does not have to 
explicitly recenter the viewport and switch image plane orienta-
tion for processes running in off-axis directions (Fig. 1e).

To investigate whether flight mode in fact accelerates human 
3D image data annotation, we trained 51 student annotators on 
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annotator crowds to reconstruct at a speed of 1.5 ± 0.6 mm/h 
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microscopic data from mammalian cortex. webKnossos 
accelerates neurite reconstruction for connectomics by 4- to 
13-fold compared with current state-of-the-art tools, thus 
extending the range of connectomes that can realistically be 
mapped in the future.

With the acceleration of 3D electron microscopic (EM) imaging 
of brain tissue1–3, image data sets sized tens of terabytes (TB) or 
even petabytes (PB) are becoming available. A cubic millimeter 
imaged at (15 nm)3 voxel (vx) size corresponds to 0.3 PB of data 
(Fig. 1a); a mouse brain imaged at the same resolution corre-
sponds to 110 PB of data. Single neurons typically extend over a 
large fraction of the data set (Fig. 1a), making it impracticable 
to distribute data on hard drives to large numbers of annotators 
who want to follow the processes of entire neurons. At the same 
time, data analysis in connectomics is limited by the amount of 
human annotation time that can be recruited for a given analysis 
project4. Thus, enabling efficient distributed 3D data annotation 
in PB-sized data sets, ideally in browser, is essential.

The existing in-browser annotation tool for connectomics, 
CATMAID5,6, uses efficient data storage and transmission in 2D 
image planes (comparable to Google Maps7), which are sequen-
tially browsed (Fig. 1b). While this approach makes data viewing 
and annotation seamless in the plane of imaging, 3D neurite trac-
ing is slowed down by the time required to progress to the sub-
sequent image plane. Under ideal high-bandwidth, low-latency 
connectivity conditions (like those within research institutions), 
this approach yields a reconstruction speed of about 470 µm/h 
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figure 1 | In-browser 3D annotation of axons and dendrites for connectomics. (a) Sketch of mouse whole-brain 3D EM data set size (top) and  
1 mm3 of cerebral cortex (bottom) compared with the extent of a typical single pyramidal neuron (dendrites, magenta; axon, black). (b) Sketch of 
online data delivery modes using lateral prefetching in 2D (top, Google maps, CATMAID) and in 3D (bottom, webKnossos). (c) Comparison of data 
transmission when following a neurite using 2D image prefetching (black, in CATMAID) and 3D data prefetching in webKnossos (blue, ortho mode) 
under different bandwidth and latency conditions. Transcont, transcontinental access (https://www.openconnectomeproject.org from Europe, custom 
CATMAID and webKnossos from South America, bottom to top). (d) webKnossos in-browser user interface with orthogonal viewports (xy, yz, xz), one 
3D skeleton viewport, and the abstract tree viewer (right). (e) Sketch of viewing surface orientation (red) in orthogonal mode (top) and flight mode 
(bottom). (f) Flight-mode egocentric 3D image sampling on a hemisphere (top), yielding a single flight-mode data view (bottom). (g) Example of  
3D prefetching in flight mode given flight direction and current position (gray, prefetched webKnossos cubes; red, flight-mode image surface).  
(h) Annotator speed training in ortho mode (black, n = 25 annotators) and flight mode (magenta, n = 26 annotators) on 40 neurites in cortex 
(randomly ordered per annotator). (i) Tracing speed test on 20 randomly selected cortical axons (including branches) performed by 26 annotators  
8 weeks after training. Dashed line, first five neurites presented again from training. Solid line, 20 test axons. Box plots report tracing speed for 
these 20 test axons in ortho (black) and flight mode (magenta), reported over n = 26 annotators (left) and n = 20 axons (right); flight 1.51 ±  
0.04 mm/h, ortho 0.96 ± 0.03 mm/h (n = 520, mean ± s.e.m.). (j) Display of 20 test axons within data set boundary. (k) Illustration of tracing error 
measurement in one of the 20 axons—local errors (inset, less than 10-µm path length) and continuation errors (right). Black, ground truth; red,  
six-fold consolidated flight-mode tracing. (l) Tracing errors reported over tracing redundancy (using RESCOP8) for 10 axons in ortho mode, flight mode 
and for 10 dendrites in flight mode (cyan), respectively. (m) same as l but only continuation errors (see k). Dashed lines in l and m, path length 
corrected for each RESCOPed skeleton (see Online Methods). (n) Relation between tracing speed and error rates for single-annotator reconstructions 
(n = 30) of axons and dendrites (colors as in l and m). Crosses indicate mean ± s.e.m. (o) same as n for continuation errors only. (p) Summary 
comparison of annotation time requirements for neurite reconstruction. Data from c, (black, webKnossos, https://webknossos.org; red, CATMAID) and 
from i and n (crosses). Asterisk, annotation consumption documented in published work; pyK, consumption by experienced annotators10; K, KNOSSOS 
annotation consumption from refs. 8, 11 and 12.
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40 neurites in a 3D EM data set from mouse cortex sized 93 × 
60 × 93 µm3, imaged at 11.24 × 11.24 × 28 nm3 using SBEM 
(data not shown; Fig. 1h). The sequence of neurites to trace was 
shuffled for each student (total path length of all 40 neurites, 
6.11 mm; number of branch points, 258; overall branch point 
rate, 42 per mm). The student annotators came from our pool of 
trained annotators and were thus experienced in connectomic 
data reconstruction (Supplementary Fig. 1). They were randomly 
assigned to two groups of 25 and 26 students, respectively. One 
group was asked to trace in ortho mode, the other in flight mode. 
We supplied both groups with an 8.5-min tutorial movie (a sepa-
rate movie for each group), which encouraged them to increase 
their movement speed whenever they felt they could go faster 
during reconstructions (Supplementary Fig. 1b,d). To enable 
constantly maximized tracing speed for each annotator, we auto-
matically tracked the fraction of time during which the annota-
tors proceeded at the preset movement speed (i.e., when holding 
the forward key pressed while navigating) and reminded them to 
increase their preset movement speed if they spent more than 75% 
of their tracing time constantly pressing the forward key. In ortho 
mode (Fig. 1h), annotators initially traced at 0.49 ± 0.04 mm/h 
(first ten processes, mean ± s.e.m.) and accelerated to 0.63 ± 0.05 
mm/h (last ten processes traced, P < 10−3, Wilcoxon signed-rank 
test). In flight mode (Fig. 1h), annotators started at a speed of 
0.84 ± 0.05 mm/h (faster than ortho mode, P < 10−4, Wilcoxon 
rank-sum test) and were able to increase their speed to an average 
of 1.11 ± 0.07 mm/h (P < 10−4, Wilcoxon signed-rank test), 1.8 
times faster than ortho mode tracing (P < 10−5, Wilcoxon rank-
sum test). These data indicate that a substantial reconstruction 
speed gain comes from per-user speed maximization, enabled 
by efficient 3D data handling, and an additional gain from the 
egocentric flight mode data interaction.

To test whether this tracing speed can be routinely achieved for 
axons in mammalian cerebral cortex (Fig. 1i,j), we next randomly 
selected 20 axons from a (2.5 µm)3 region in the same data set 
(Fig. 1j) and asked students trained in ortho mode to again use 
ortho mode and students trained in flight mode to again use flight 
mode. In each group, 13 of the trained students participated in 
this second experiment 8 weeks after the training (their initial 
training performance had been indistinguishable from the whole 
group, P > 0.24, Wilcoxon rank-sum test). We first presented five 
of the processes reconstructed during training to calibrate the 
persistence of the training effects, and then we presented the 20 
new axon seeds in random order to all tracers (Fig. 1i; note that 
the five neurites from the training session were not included in 
the final speed measurement). Tracers resumed annotation at the 
speed attained during training and were able to further accelerate, 
yielding a reconstruction speed of 0.96 ± 0.03 mm/h in ortho and 
1.51 ± 0.04 mm/h in flight mode (Fig. 1i, mean ± s.e.m., n = 20 
previously unseen randomly selected cortical axons; total path 
length, 2.53 mm; overall branch-point rate, 39 per mm).

But were faster tracings more error prone? We next quanti-
fied the rate of errors for 10 randomly drawn axons out of the 20 
test axons. For each axon, we manually counted the number of 
incorrect stops and incorrect continuations (Fig. 1k, performed 
by two expert annotators blinded to tracing mode, see Online 
Methods) and distinguished between errors yielding continua-
tion mistakes (i.e., a premature stop or missed branch of a major 
part of the axon) or local errors (yielding less than 10 µm neurite 

loss or neurite addition). Figure 1l reports the rate of errors for  
flight-mode and ortho-mode tracings for single-annotator recon-
structions and for consolidations of multiple reconstructions of 
the same axon (consolidated using RESCOP8). We found that, 
first, the rate of tracing errors was not distinguishable between 
ortho and flight mode tracings (P > 0.34 for all errors, P > 0.28 for 
continuation errors, Wilcoxon rank-sum test). Second, the aver-
age error rate for single-annotator reconstructions obtained at the 
achieved speed in webKnossos was not worse than the error rates 
reported previously in mouse retina8,11 and cortex13. The rate of 
continuation errors (Fig. 1m) was 7.5 ± 3.4 per mm in ortho mode 
and 5.3 ± 3.0 per mm in flight mode for single-annotator trac-
ings. We finally asked whether a speed–accuracy tradeoff could 
be observed in either of the tracing modes. For this we correlated 
the rate of errors with tracing speed in single-annotator tracings 
(Fig. 1n). No positive correlation could be found for ortho mode 
nor for flight mode (ortho r = −0.5, P = 0.007, flight r = −0.4,  
P > 0.05, Pearson’s correlation). This also was true when only 
analyzing the continuation errors (Fig. 1o, ortho r = −0.34,  
P > 0.05, flight r = −0.20, P > 0.28, Pearson’s correlation).

We thus conclude that annotators can be trained to trace corti-
cal axons at 1.51 ± 0.04 mm/h in flight mode without a reduc-
tion in accuracy. webKnossos can support this speed online and 
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figure 2 | Connectome reconstruction using webKnossos. (a) Flow chart 
and illustration (b) of connectome reconstruction steps. Ves. cloud det., 
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partner. (c) Comparison of annotation times for axons, dendrites, spines 
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(d) Reconstruction of 497 dendrites and 32 axons in local SBEM data set 
from mouse cortex following the workflow in a. Colored spheres indicate 
excitatory (Exc., violet) and inhibitory (Inh., red) synaptic contacts 
(syn.). (e) Resulting connectome between 32 presynaptic axons (presyn.) 
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in browser, and it provides a 6- to 15-fold improvement over  
published tracing speeds, depending on the reconstructed data 
sets (summarized in Fig. 1p).

To determine tracing speeds for dendrites, we reconstructed 
the shafts of ten randomly chosen dendrites (1.8-mm total path 
length, overall branch point rate 16 per mm) and measured trac-
ing errors as described above. Since dendrites are about three 
times wider in diameter14, annotators could zoom out further 
and fly along dendrites faster than they do along axons. We found 
that tracing speed was 2.11 ± 0.16 mm/h including branch-point 
reconstruction, and single-annotator error rates were 2.7 ± 0.69 
errors per mm dendrite (Fig. 1l–o).

In mammalian brains, which constitute a main challenge 
of connectomics, about 90% of the neuronal processes are 
axons14,15. The speed gain for representative axon reconstruc-
tion in flight mode was therefore critical for the acceleration of 
connectomic reconstruction in mammalian cortex. However, the 
reconstruction of connectomes additionally requires the identi-
fication of synapses and the assignment of postsynaptic partners 
to the respective neuronal cell bodies and dendrites. Figure 2a,b 
illustrates a workflow for such connectome reconstruction. In 
this workflow, axons and dendritic shafts are reconstructed first 
(including branch points). Then a synapse movie mode is acti-
vated in webKnossos; in this mode, the user can fly along the pre-
traced axon and click into the postsynaptic process whenever a 
synapse is encountered. In the final step, the postsynaptic partner 
(in about 90% a spine head, Supplementary Fig. 2a) is seeded 
for annotators to trace back to the main shaft of dendrites. In 
this workflow, the fraction of time spent on synapse annotation 
is small for sparse reconstructions (7–11% for typical network 
reconstructions, Fig. 2c, Supplementary Fig. 2b) but is becoming 
more substantial for dense reconstructions, approaching about 
50% of reconstruction time (Supplementary Fig. 2b). Since syn-
apse detection requires only a local image classification (unlike 
neurite tracing), automated synapse detection is likely to soon 
replace manual synapse detection in dense connectome recon-
structions (e.g., refs. 16–19). To exemplify a full connectomic 
reconstruction using webKnossos, we finally reconstructed 497 
dendrites (total path length of 93.6 mm, tracing redundancy 3),  
and determined all synapses with 32 axons from the training set 
(Fig. 1j, 4.55 mm path length of axons, tracing redundancy 6). 
We detected 104 synapses in this local connectome (Fig. 2d,e) 
(total annotation time was 27.3 h for axons, 133 h for dendrites, 
and 19.2 h for synapses).

In summary, webKnossos accelerates human 3D data inter-
action for EM-based connectomics in browser by about 4- to 
13-fold, which likely saturates human interaction speed with 
3D EM data of nervous tissue using flight mode. While tested 
on well-aligned 3D SBEM data from mammalian cortex, these  
results are expected to be comparable for other neuropil with 
comparable neurite morphology (especially branch-point rates, 
e.g., in subcortical structures and ganglion cells in mammalian 
retina, see http://www.neuromorpho.org). Reconstructions  
in highly anisotropic and potentially less well-aligned image 
data can still profit from the speedup because of faster display 
rates in ortho mode tracings (see Fig. 1i). Thus webKnossos  
can serve as a versatile high-efficiency tool for 3D image data 
annotation in various 3D image analysis settings in connectomics 
and other fields.

methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
3D SBEM data, animal experiments. The 3D EM image data 
was acquired using serial blockface electron microscopy (SBEM1) 
from primary somatosensory cortex layer 4 of a P28 C57BL/6 
male mouse, same data set as in ref. 12 (93 × 60 × 93 µm3, 11.24 
× 11.24 × 28 nm3 resolution, data set 2012-09-28_ex145_07x2_
new2). All animal experiments were carried out with approval  
of the local animal research authorities (Regierungspräsidium 
Oberbayern, Germany) and in accordance with the German 
Animal Welfare Act.

Image data transmission. For efficient volume data transmis-
sion, data is requested in small cubic packages 323 voxel in size 
(‘buckets’) stored at original 8-bit depth. For bandwidth-limited 
settings, each voxel in a bucket is trimmed to the 4 most signifi-
cant bits for transmission (‘4-bit mode’, user activatable). Buckets 
are requested along a priority ranking based on the current  
view point and direction of movement. In ortho mode, all buckets 
in the plane of the active viewport are loaded first, prioritized by 
the Manhattan distance to the viewport center. The buckets of the 
next two bucket layers in direction of movement are prioritized 
next, with two- and four-fold-reduced priority, respectively. All 
buckets are loaded at the user-specified magnification level.

In flight mode the preview volume is a square frustum with basis 
sized 5 × 5 buckets, height of 2.5 buckets, oriented along the cur-
rent movement direction, and top sized 4 × 4 buckets. All buckets 
fully or partially contained in this volume are requested at original 
magnification, prioritized by the Manhattan distance between the 
respective bucket center and the current viewpoint. The prioritized 
bucket request queue is updated on each user movement.

Measurement of 3D data transmission speed: webKnossos. 
The speed of data transmission for 3D navigation in webKnossos  
(Fig. 1d) was measured as follows. webKnossos was run at a 
Hetzner (Gunzenhausen, Germany) data center on a server with 
the following specifications: Intel(R) Xeon(R) CPU E3-1245 V2 
(4 × 3,4 GHz); 32 GB RAM; 15 × 3 TB HWRaid HDD. The EM 
data set was viewed in 4-bit mode in webKnossos run in Google 
Chrome (version 56) on a computer in the MPI for Brain Research.  
A neurite was picked and followed using the forward and arrow 
keys, keeping the forward key pressed where possible (which 
resulted in continuous image stream in webKnossos). To emu-
late reduced connectivity settings, the developer tools function 
of Google Chrome was used. The ‘transcontinental’ experiment 
(Fig. 1c) was performed on a computer connected to the network 
of the Instituto de Investigación en Biomedicina de Buenos Aires, 
Argentina, accessing the webKnossos instance running on the 
Hetzner server in Germany (see above).

Measurement of 3D data transmission speed: sequential 2D. 
The speed of data transmission for sequential 2D image navigation 
(Fig. 1c) was measured as follows. We followed the instructions 
by the CATMAID authors to optimize server performance (pub-
lished under https://groups.google.com/forum/#!topic/catmaid/ 
vE__4iLrPv4 ). A CATMAID instance (version 2016.12.16) was 
installed on a server in the compute center of the Max Planck 
Society (Garching, Germany) with the following specifications: 
Xeon E5-2630 12 cores, 128 GB RAM, 10 Gb network, JBOD of 
4× Intel DC S3500 240 GB SSDs, Ubuntu 14.04. Postgres and 

data partitions resided on SSDs; XFS was used with noatime. The 
3D image data set 2012-09-28_ex145_07x2_new2 (s. above) was 
converted to a series of 256 × 256 px jpg images, compressed by 
75% with jpg headers removed to further reduce file size as sug-
gested by the CATMAID authors. The data were resliced into 
three image series along the three cardinal directions.

The ‘transcontinental’ experiment was performed by accessing 
CATMAID on https://www.openconnectomeproject.org from a 
desktop computer in the MPI for Brain Research and by accessing 
the custom CATMAID instance at the Max Planck datacenter in 
Germany from a computer connected to the network of the Instituto 
de Investigación en Biomedicina de Buenos Aires, Argentina. All 
tests were performed in Google Chrome (version 56). The view-
ports in CATMAID and webKnossos were set to similar size.

Annotator training. For training annotators at high-speed anno-
tation (Fig. 1h), 40 training neurites were selected from the cortex 
data set (see above). For this, a bounding box sized 4.5 × 4.5 × 4.2 µm3  
was chosen. Then, two annotators were asked to reconstruct all 
processes within this bounding box. Next, each of the recon-
structed processes was classified as axon, dendrite or glia. Finally, 
40 of the 68 processes classified as axons were randomly selected. 
For each process, an expert annotator defined a starting position 
and a starting direction (required for flight-mode annotation).

51 annotators were trained. These annotators were randomly 
assigned to two groups (flight (n = 26) and ortho mode (n = 25)). 
Annotators were asked to watch an introductory video, which 
instructed them to increase their maximum velocity setting (the 
speed at which the annotator progresses through the data when 
the space key is held down continuously). Each annotator was 
presented with the 40 training processes in random order. The 
annotators’ preset maximum velocities were monitored during 
the annotation process. If the ratio of tracing speed and preset 
maximum velocity was higher than 0.75 for an entire tracing, 
the annotator was notified via e-mail and asked to increase the 
maximum velocity setting for the next annotation.

Axon test reconstruction. For the test of axon reconstruction 
speed (Fig. 1i), the 51 previously trained annotators were asked 
to reconstruct 20 randomly selected axons 8 weeks after the ini-
tial training. 26 annotators signed up for this experiment (13 that 
had been trained on flight mode and 13 that had been trained  
on ortho mode). These annotators had not been faster in the 
final ten training iterations than the whole group of annotators 
(P = 0.246 (Wilcoxon rank-sum test) und P = 0.250 (t-test)) 
and had not been faster in the final training iteration (P = 0.699 
(Wilcoxon rank-sum test) and P = 0.649 t-test).

To select a set of representative axons, a (2.5 µm)3 bounding box 
(located randomly within the cuboid of 15 µm edge length cen-
tered to the data set center) was chosen that did not contain a soma, 
and all neuronal and glial processes within this bounding box were 
reconstructed by one expert annotator. Then all processes were clas-
sified as axonal, dendritic or glial. Three additional expert annota-
tors proofread the annotation. Then, 20 of the 41 processes labeled 
as axonal were randomly selected, and for each axon a seed position 
and initial orientation were defined within the bounding box.

The 26 annotators were first asked to again reconstruct five 
neurites from the training experiment (these five neurites were 
randomly chosen from the 40 training seeds and were the same 

https://groups.google.com/forum/#!topic/catmaid/vE__4iLrPv4
https://groups.google.com/forum/#!topic/catmaid/vE__4iLrPv4
https://www.openconnectomeproject.org
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for all annotators; the sequence in which these were presented was 
randomized for each annotator). Then each annotator was asked 
to reconstruct the 20 previously unseen test axons (in a sequence 
randomized per annotator) in flight mode or ortho mode.  
After all annotators had finished, all annotations were automati-
cally scanned for open branch points (i.e., positions at which the 
annotator had set a branch point flag but had forgotten to jump 
back to for inspection) and seed nodes with a degree of 1 (i.e., 
starting points which had only been traced in one direction). 
17 open branch points (12 at first node) and 22 unidirectional  
seeds were detected (5 in flight, 17 in ortho) of 2,170 fully anno-
tated branch points, total. In these cases the annotators were 
asked to go back to the task and continue their annotations. 
The code for this automated annotation checking is provided in 
Supplementary Software 1.

Dendrite reconstruction. 497 dendrites were reconstructed in 
flight mode by 47 of the annotators previously trained in ortho or 
flight mode (see above). Those annotators that had worked in ortho 
mode before were asked to watch the instruction movie for flight 
mode before performing the dendrite reconstructions. Annotators 
were instructed to set the data set quality setting in webKnossos to 
medium (which means that image data is displayed at lower resolu-
tion) and not to reconstruct spines.

The 497 dendrite seeds for the connectome reconstruction 
(Fig. 2) were drawn randomly from a set of over 2,000 dendrites 
that had previously been reconstructed using webKnossos. For 
all dendrites, the z-axis pointing toward the data set center was 
used as initial flight orientation.

Measurement of annotation speed. For measurement of anno-
tation speed, the path length of a given neurite and the time 
it took to annotate that neurite were determined. To measure 
neurite path length from a skeleton annotation, the lengths of 
all edges within a skeleton were summed (as in refs. 8 and 11). 
However, this method has two caveats. First, noise in the place-
ment of skeleton nodes will be biased to only increase apparent 
skeleton length, not decrease it, which could potentially lead to 
an overestimation of annotation speed. Second, this effect will 
depend on the density of placed skeleton nodes. Since in flight 
mode the skeleton nodes are placed automatically, the density of 
skeleton nodes is substantially higher in flight mode than in ortho 
mode tracings (flight, 6.3 ± 0.68 nodes/µm; ortho, 1.79 ± 0.67  
nodes/µm, measured on the ten axons used for Fig. 1l–o). To 
account for these potential biases, we first used nonuniform rational 
b-spline (NURBS20)-based skeleton smoothing to calibrate the effect 
of node placement noise on skeleton path length (Supplementary 
Fig. 1f); using the skeleton nodes as support knots, NURBS spline 
order (i.e., the degree of smoothing) NO = 4 and clamping the first 
and last node. We found that post-NURBS path length measure-
ments of flight tracings are still on average 14.93 ± 1.08% (mean ± 
s.e.m.) longer than ortho tracings (Supplementary Fig. 1g). To cor-
rect for this and for the difference in node densities between tracing 
modes, we scaled NO in dependence of skeleton node density Ds (in 
number of nodes per µm edge-based skeleton length), 
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with Nn (the total number of skeleton nodes per tracing) and 
parameters c1, c2 and c3. The parameters were adjusted such that the 
average path lengths of neurites from the training set were similar 
for flight- and ortho-mode tracings (resulting in c1 = 50, c2 = 5, c3 = 
4; as a result, average ortho and flight path length for a given axon 
agreed within 1.79 ± 1.16%). See Supplementary Figure 1g and 
Supplementary Software 1–3 for comparisons of skeleton path 
length measurements based on edge length and NURBS smoothing 
with fixed NO and variable NO, respectively. The length measure-
ments involving NURBS smoothing with fixed NO and variable 
NO reduced the path length obtained from the simple edge length 
addition method by less than 20% (Supplementary Fig. 1g). The 
variable NO path length measurement method was used for speed 
measurements in the axon test set and the dendrite tracings.

To determine the annotation time of a given tracing, the 
administrative API of webKnossos was used (Supplementary  
Software 4) to log autosave events. Autosave events are triggered 
when the annotator is actively tracing within the last 30 s and the 
last autosave was more than 30 s ago. Therefore, during annota-
tion work, an autosave is submitted every 30 s (but not during 
pauses the annotator chooses to take). Annotation time was meas-
ured as the number of autosave events times 30 s. This is also the 
time used for determining annotator payment.

Annotation redundancy: RESCOP. For determining the depend-
ence of annotation error rates on annotation redundancy (Fig. 1l–o),  
multiple annotations of the same neurite from different annotators 
were consolidated using RESCOP8. Briefly, the priors and decision 
boundaries were fitted separately for axons traced in ortho and 
flight mode (Supplementary Fig. 1h,i). The priors were fitted using  
20 randomly selected annotations for each neurite from the train-
ing annotations (i.e., 800 annotations for ortho and flight mode, 
respectively, total of 865,121 edges, 866,721 nodes for computing 
the vote histogram, Supplementary Fig. 1h). The resulting decision 
boundaries are shown in Supplementary Figure 1i.

Measurement of annotation error rates. For the measurement 
of annotation errors, 10 of the 20 test axons (Fig. 1j) were ran-
domly selected. For these ten axons, a ground truth annotation 
was generated. To do this, the axon was first traced by one expert 
annotator. Then, all annotations of this axon from all tracers and 
tracing modes were superimposed; and all locations of discrep-
ancy between the experts’ annotation and all other annotations 
were inspected. Remaining errors in the expert annotation were 
corrected. Finally, two additional experts verified the ground 
truth annotation independently.

Then, for each of the ten axons, three ortho-mode and three 
flight-mode annotations were randomly selected and their  
discrepancies to the ground truth annotation counted as in  
ref. 8 (Fig. 5c in this reference). Similarly, consensus skeletons 
at redundancies 2, 3, 4, 5, 6, 7, 10 and 13 were computed using 
RESCOP8 (see above) for each of the ten axons and the two  
tracing modes, respectively. For each redundancy, 3 sets  
of tracings were randomly drawn from the available 13 tracings 
per axon and tracing mode. Thus, together, 540 reconstructions 
were error analyzed.

Error analysis was done by one expert annotator and proof-
read by a second expert annotator. Both experts were blinded to  
the tracing mode in which the reconstructions were performed. 
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For error analysis, the reconstructions were plotted in the three 
cardinal projections, overlaid with the ground truth reconstruc-
tion. Errors were classified into missing branches (false negatives) 
and wrongly added branches (false positives). Jumps from one 
process into another were counted twice, once as FP and once 
as FN. Errors were further classified according to the length of 
added or omitted neurite pieces (>10 µm, 5–10 µm, 3–5 µm,  
1–3 µm; discrepancies smaller than 1 µm were not counted, as  
in ref. 8). Error segments larger than 10 µm were classified as  
continuation errors (Fig. 1k).

For the measurement of errors in dendrite reconstructions, 10 
of the 497 reconstructed dendrites were randomly selected and 
error-annotated as for the axon reconstructions. Since error rates 
were substantially lower for dendrites than for axons (Fig. 1l–o), 
only redundancies 1–6 were evaluated for dendrites.

Path length of consolidated reconstructions. To make our 
results comparable to error rates reported in refs. 8, 11 and 13, 
we normalized the number of errors to the path length of the 
ground truth skeleton for each axon (Fig. 1l,m). However, since 
some annotations were shorter (due to missed neurite pieces) 
and others longer (due to added neurite pieces), we wanted to 
assure that our conclusions about error rates (Fig. 1l–o) were still 
correct when instead the neurite path length of the actual tracing 
or consolidation was used for error rate computation. To do so, 
we determined the path length for each RESCOP-consolidated  
reconstruction by generating a version of the ground truth recon-
struction that matched the respective RESCOP-consolidated 
reconstruction (including its possible false negative errors), and 
we measured that skeleton’s path length as described above.

Synapse annotation and connectome reconstruction. To 
exemplify the full analysis workflow for reconstructing connec-
tomes using webKnossos, we used all axons from the training 
reconstructions (32 axons, at RESCOP redundancy 6, step I in  
Fig. 2a–c) and 497 dendrite reconstructions (Fig. 2d, at redun-
dancy 3, step II in Fig. 2a–c). For synapse annotation (step III  
in Fig. 2a–c), a synapse movie mode in webKnossos was used 
(this mode is automatically activated for webKnossos tasks of type 
‘synapseannotation’). This was built as an extension of flight mode 
in which the previously reconstructed skeleton was displayed. The 
annotator was asked to mark synapses by setting a single node 
into the postsynaptic process while navigating along the axon. 
For the synapse movie mode, the (consolidated) reconstruction 
was first cut into unbranched parts, and each of these parts was 
presented to the annotators (see Supplementary Software 1 for 
the corresponding MATLAB code).

Ten annotators were trained for synapse annotation in an intro-
ductory 1-h seminar followed by two training axons for which 
they received immediate feedback. Then all annotators were asked 
to determine the output synapses of all 32 axons. To measure the 
precision and recall of synapse detection by student annotators, 
four of the axons were randomly selected, and synapse detec-
tion errors were determined by expert annotators. The student 
annotator with optimal precision and recall of synapse detection 
(precision 96%, recall 89%) was selected for the generation of the 
output connectome. In addition, annotators were instructed to 
mark axons as putative inhibitory axons if the majority of output 
synapses were made onto shafts.

For the axons that the best annotator marked as inhibitory, 
a second annotator was asked to annotate the synapses of that 
axon. For the annotation of inhibitory synapses, the annotator 
was instructed not to focus on speed of synapse annotation. The 
resulting synapse annotations were reviewed by an expert annota-
tor to establish error rates for inhibitory synapse annotation (no 
error in 20 reviewed synapse annotations).

This procedure operated at 1.2 ± 0.5 h per mm candidate axon 
segment length (n = 151, excitatory axons; 1.8 ± 1.0 h per mm 
for all axons, n = 178)

To determine whether the postsynaptic targets of the recon-
structed axons matched any of the 497 dendrites in the con-
nectome, the annotation of the postsynaptic partner in synapse  
mode was used as a new seed for an annotation task (step IV 
in Fig. 2a–c). The annotators for these tasks were asked to only 
reconstruct the postsynaptic structure (in about 90% of cases a 
spine) in ortho mode until it entered a dendritic shaft and to 
then place three additional skeleton nodes in the shaft center to 
simplify the matching to dendrite reconstructions. This anno-
tation had a consumption of 31.1 ± 28.0 s annotation time per 
spine, mean ± s.d., n = 975; i.e. 2.3 ± 1.3 h per mm axon path 
length. Error rates of this postsynaptic process annotation were 
established by inspection of 30 randomly selected postsynaptic 
structures by an expert annotator (one wrong annotation).

To match the postsynaptic partner reconstructions (step V in 
Fig. 2a) with the 497 dendrite reconstructions, we finally meas-
ured the average distance dpd between all dendrites and the three 
shaft nodes of each postsynaptic partner reconstruction, and 
we detected the dendrite with the smallest average distance. To 
determine an attachment threshold—i.e. a maximum average 
distance dpd* up to which a postsynaptic partner reconstruction 
was considered to match a dendrite reconstruction—we used a 
randomly chosen set of 200 partner reconstructions. In these, 
the distribution of dpd (Supplementary Fig. 2a) indicated a 
threshold distance dpd* of 250 nm. To determine the error rate 
of postsynaptic partner matching, we evaluated the matching in 
an additional set of 200 randomly chosen spines and their closest 
dendrite (21 true positives, 1 false positive, 178 true negatives, 
no false negatives). All code for these procedures is available in 
Supplementary Software 1.

Connectome annotation time estimates. For the annotation 
time approximation of an example L2/3-L4 cortical connectome 
(Supplementary Fig. 2c), we used 1.5 mm/h reconstruction speed 
and six-fold redundancy for axons, and 2.1 mm/h reconstruction 
speed at three-fold redundancy for dendrites. For estimating the 
reconstruction time spent on synapse annotation (Supplementary 
Fig. 2b), two approaches for synapse annotation were consid-
ered. One, axon-based synapse annotation (Fig. 2a,b), proceeds 
along axons, marking synapses and identifying postsynaptic part-
ners, which are then matched to dendrite reconstructions (see 
“Results”). The other, dendrite-based synapse annotation, pro-
ceeds along dendrites, reconstructing all spines along dendritic 
shafts. Spine annotation along dendrites proceeds at about 40 s 
per spine (time taken to reconstruct a spine and mark its presyn-
aptic partner) at a spine density of about 1 per µm dendrite length. 
In both strategies, we assumed that only proximities of axons 
and dendrites at less than 5 µm distance need to be investigated 
for synapses. Therefore, depending on the density of axons and 
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dendrites in a given reconstruction task, the length of axons and 
dendrites that need to be synapse searched varies, which yields 
an optimal strategy for any given volume density of axons and 
dendrites. Dendrite and axon reconstruction speed used for these 
estimates was 2.1 mm/h and 1.5 mm/h (at three- and six-fold 
redundancy, respectively).

Statistical tests. The speed and the error comparison between 
ortho and flight tracers and the speed comparison between the 
subset of annotators for the second experiment and all anno-
tators used Wilcoxon rank-sum test. The speed comparison for 
annotators between beginning and end of training used Wilcoxon 
signed-rank test. The correlation between tracing error rate and 
tracing speed was computed using Pearson’s correlation.

Software availability, code availability and licensing. webKnossos 
is available for testing at https://demo.webknossos.brain.mpg.de  
together with example data sets: the published retina data sets 
e2198 (ref. 21), k0563 (refs. 8, 11 and 21) and e2006 (ref. 11), 
a 20 × 20 × 20 µm3 sized subvolume of the data set 2012-09-
28_ex145_07x2_new2 used for webKnossos testing (see above), 
and an example fluorescence data set (FD0149-2, data not shown).  
See Supplementary Video 2 for an introductory video.

The webKnossos source code is provided as Supplementary 
Software 5 and is also available at https://github.com/scalableminds/ 
webKnossos. webKnossos is licensed under the AGPLv3 license 
(this applies to all source code files in Supplementary Software 
1–5 and GitHub repository). webKnossos uses the following soft-
ware packages and technologies: Scala, JDK 8, Play, mongoDB, 
WebGL, ThreeJS, Backbone, sbt.

Data availability statement. webKnossos is openly accessible 
at https://demo.webknossos.brain.mpg.de, where data sets from 
retina and cortex can be browsed and annotated. The entire SBEM 
data set of the mouse cortex that support the findings in this 
study are available from the corresponding author upon reason-
able request. webKnossos is open source, source code is avail-
able as Supplementary Software 5 and at https://github.com/ 
scalableminds/webknossos. All reconstructions used in this study 
are available in Supplementary Software 1, 2 and 3. Source data 
for Figures 1 and 2 are available online.
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