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ABSTRACT 20 

 21 

Nerve tissue contains a high density of chemical synapses, about 1 per µm3 in the 22 

mammalian cerebral cortex. Thus, even for small blocks of nerve tissue, dense 23 

connectomic mapping requires the identification of millions to billions of synapses. 24 

While the focus of connectomic data analysis has been on neurite reconstruction, 25 

synapse detection becomes limiting when datasets grow in size and dense mapping 26 

is required. Here, we report SynEM, a method for automated detection of synapses 27 

from conventionally en-bloc stained 3D electron microscopy image stacks. The 28 

approach is based on a segmentation of the image data and focuses on classifying 29 

borders between neuronal processes as synaptic or non-synaptic. SynEM yields 30 

97% precision and recall in binary cortical connectomes with no user interaction. It 31 

scales to large volumes of cortical neuropil, plausibly even whole-brain datasets. 32 

SynEM removes the burden of manual synapse annotation for large densely mapped 33 

connectomes. 34 

 35 

  36 
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 37 

INTRODUCTION 38 

 39 

The ambition to map neuronal circuits in their entirety has spurred substantial 40 

methodological developments in large-scale 3-dimensional microscopy (Denk & 41 

Horstmann, 2004, Hayworth et al., 2006, Knott et al., 2008, Eberle et al., 2015), 42 

making the acquisition of datasets as large as 1 cubic millimeter of brain tissue or 43 

even entire brains of small animals at least plausible (Mikula et al., 2012, Mikula & 44 

Denk, 2015). Data analysis, however, is still lagging far behind (Helmstaedter, 2013). 45 

One cubic millimeter of gray matter in the mouse cerebral cortex, spanning the entire 46 

depth of the gray matter and comprising several presumed cortical columns (Fig. 1a), 47 

for example, contains at least 4 kilometers of axons, about 1 kilometer of dendritic 48 

shafts, about 1 billion spines (contributing an additional 2-3 kilometers of spine neck 49 

path length) and about 1 billion synapses (Fig. 1b). Initially, neurite reconstruction 50 

was so slow, that synapse annotation comparably paled as a challenge (Fig. 1c): 51 

when comparing the contouring of neurites (proceeding at 200-400 work hours per 52 

millimeter neurite path length) with synapse annotation by manually searching the 53 

volumetric data for synaptic junctions (Fig. 1d, proceeding at about 0.1 hour per 54 

µm3), synapse annotation consumed at least 20-fold less annotation time than 55 

neurite reconstruction (Fig. 1c). An alternative strategy for manual synapse detection 56 

is to follow reconstructed axons (Fig. 1e) and annotate sites of vesicle accumulation 57 

and postsynaptic partners. This axon-focused synapse annotation reduces synapse 58 

annotation time by about 8-fold for dense reconstructions (proceeding at about 1 min 59 

per potential contact indicated by a vesicle accumulation, which occurs every about 60 

4-10 µm along axons in mouse cortex). 61 

With the development of substantially faster annotation strategies for neurite 62 

reconstruction, however, the relative contribution of synapse annotation time to the 63 

total reconstruction time has substantially changed. Skeleton reconstruction 64 

(Helmstaedter et al., 2011) together with automated volume segmentations 65 

(Helmstaedter et al., 2013, Berning et al., 2015), allow to proceed at about 7-10 66 

hours per mm path length (mouse retina, Helmstaedter et al., 2013) or 4-7 hours per 67 

mm (mouse cortex, Berning et al., 2015), thus about 50-fold faster than manual 68 

contouring. Recent improvements in online data delivery and visualization (Boergens 69 

et al., 2017) further reduce this by about 5-10 fold. Thus, synapse detection has 70 

become a limiting step in dense large-scale connectomics. Importantly, any further 71 
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improvements in neurite reconstruction efficiency would be bounded by the time it 72 

takes to annotate synapses. Therefore, automated synapse detection for large-scale 73 

3D EM data is critical. 74 

High-resolution EM micrographs are the gold standard for synapse detection (Gray, 75 

1959, Colonnier, 1968). Images acquired at about 2-4 nm in-plane resolution have 76 

been used to confirm chemical synapses using the characteristic intense heavy 77 

metal staining at the postsynaptic membrane, thought to be caused by the 78 

accumulated postsynaptic proteins (“postsynaptic density”, PSD), and an 79 

agglomeration of synaptic vesicles at the membrane of the presynaptic terminal. 80 

While synapses can be unequivocally identified in 2-dimensional images when cut 81 

perpendicularly to the synaptic cleft (Fig. 1f), synapses at oblique orientations or with 82 

a synaptic cleft in-plane to the EM imaging are hard or impossible to identify. 83 

Therefore, the usage of 3D EM imaging with a high resolution of 4-8 nm also in the 84 

cutting dimension (FIB/SEM, Knott et al., 2008) is ideal for synapse detection. For 85 

such data, automated synapse detection is available and successful (Kreshuk et al., 86 

2011, Becker et al., 2012, 2013, Suppl. File 1). However, FIB-SEM currently does not 87 

scale to large volumes required for connectomics of the mammalian cerebral cortex. 88 

Serial Blockface EM (SBEM, Denk & Horstmann, 2004) scales to such mm3 -sized 89 

volumes. However, SBEM provides a resolution just sufficient to follow all axons in 90 

dense neuropil and to identify synapses across multiple sequential images, 91 

independent of synapse orientation (Fig. 1g, see also Synapse Gallery in 92 

Supplementary File 4; the resolution of SBEM is typically about 10x10x30 nm3; Fig. 93 

1g). In this setting, synapse detection methods developed for high-in plane resolution 94 

data do not provide the accuracy required for fully automated synapse detection (see 95 

below). 96 

Here we report SynEM, an automated synapse detection method based on an 97 

automated segmentation of large-scale 3D EM data (using SegEM, Berning et al., 98 

2015; an earlier version of SynEM was deposited on biorxiv, Staffler et al., 2017). 99 

SynEM is aimed at providing fully automated connectomes from large-scale EM data 100 

in which manual annotation or proof reading of synapses is not feasible. SynEM 101 

achieves precision and recall for single-synapse detection of 88% and for binary 102 

neuron-to-neuron connectomes of 97% without any human interaction, essentially 103 

removing the synapse annotation challenge for large-scale mammalian 104 

connectomes.  105 

 106 

 107 
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RESULTS 108 

 109 

Interface classification 110 

 111 

We consider synapse detection as a classification of interfaces between neuronal 112 

processes as synaptic or non-synaptic (Fig. 2a; see also Mishchenko et al., 2010, 113 

Kreshuk et al., 2015, Huang et al., 2016). This approach relies on a volume 114 

segmentation of the neuropil sufficient to provide locally continuous neurite pieces 115 

(such as provided by SegEM, Berning et al., 2015, for SBEM data of mammalian 116 

cortex), for which the contact interfaces can be evaluated.  117 

The unique features of synapses are distributed asymmetrically around the synaptic 118 

interface: presynaptically, large vesicle pools extend into the presynaptic terminal 119 

over at least 100-200 nm; postsynaptically, the PSD has a width of about 20-30 nm. 120 

To account for this surround information our classifier considers the subvolumes 121 

adjacent to the neurite interface explicitly and separately, unlike previous approaches 122 

(Kreshuk et al., 2015, Huang et al., 2016), up to distances of 40, 80, and 160 nm 123 

from the interface, restricted to the two segments in question (Fig. 2b; the interface 124 

itself was considered as an additional subvolume). We then compute a set of 11 125 

texture features (Table 1, this includes the raw data as one feature), and derive 9 126 

simple aggregate statistics over the texture features within the 7 subvolumes. In 127 

addition to previously used texture features (Kreshuk et al., 2011, Table 1), we use 128 

the local standard deviation, an intensity-variance filter and local entropy to account 129 

for the low-variance (“empty”) postsynaptic spine volume and presynaptic vesicle 130 

clouds, respectively (see Fig. 2c for filter output examples and Fig. 2d for filter 131 

distributions at an example synaptic and non-synaptic interface). The “sphere 132 

average” feature was intended to provide information about mitochondria, which 133 

often impose as false positive synaptic interfaces when adjacent to a plasma 134 

membrane. Furthermore, we employ 5 shape features calculated for the border 135 

subvolume and the two subvolumes extending 160 nm into the pre- and postsynaptic 136 

processes, respectively. Together, the feature vector for classification had 3224 137 

entries for each interface (Table 1).  138 

 139 
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 140 

SynEM workflow and training data 141 

 142 

We developed and tested SynEM on a dataset from layer 4 (L4) of mouse primary 143 

somatosensory cortex (S1) acquired using SBEM (dataset ex145_07x2, Boergens et 144 

al., in prep.; the dataset was also used in developing SegEM, Berning et al., 2015). 145 

The dataset had a size of 93 x 60 x 93 µm3 imaged at a voxel size of 11.24 x 11.24 x 146 

28 nm3. The dataset was first volume segmented (SegEM, Berning et al., 2015, Fig. 147 

2a, see Fig. 2e for a SynEM workflow diagram). Then, all interfaces between all pairs 148 

of volume segments were determined, and the respective subvolumes were defined. 149 

Next, the texture features were computed on the entire dataset and aggregated as 150 

described above. Finally, the shape features were computed. Then, the SynEM 151 

classifier was implemented to output a synapse score for each interface and each of 152 

the two possible pre-to-postsynaptic directions (Fig. 3a-c). The SynEM score was 153 

then thresholded to obtain an automated classification of interfaces into synaptic / 154 

non-synaptic (θ in Fig. 3a). Since the SynEM scores for the two possible synaptic 155 

directions at a given neurite-to-neurite interface were rather disjunct in the range of 156 

relevant thresholds, we used the larger of the two scores for classification (Fig. 3b; θs 157 

and θnn refer to the SynEM thresholds optimized for single synapse or neuron-to-158 

neuron connectome reconstruction, respectively, see below).  159 

We obtained labels for SynEM training and validation by presenting raw data 160 

volumes of (1.6 x 1.6 x 0.7-1.7) µm3 that surrounded the segment interfaces to 161 

trained student annotators (using a custom-made annotation interface in Matlab, Fig. 162 

3 – figure supplement 1). The raw data was rotated such that the interface was most 163 

vertically oriented in the image plane presented to the annotators; the two interfacing 164 

neurite segments were colored transparently for identification (this could be switched 165 

off by the annotators when inspecting the synapse, see Methods for details). 166 

Annotators were asked to categorize the presented interface as either non-synaptic, 167 

pre-to-postsynaptic, or post-to-presynaptic (Fig. 3c, Fig. 3 – figure supplement 1). 168 

The synaptic labels were then verified by an expert neuroscientist. A total of 75,383 169 

interfaces (1,858 synaptic, 73,525 non-synaptic) were annotated in image volumes 170 

drawn from 40 locations within the entire EM dataset (Fig. 3 – figure supplement 2). 171 

About 80% of the labels (1467 synaptic, 61,619 non-synaptic) were used for training, 172 

the remaining were used for validation.  173 
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Initially, we interpreted the annotator’s labels in an undirected fashion: irrespective of 174 

synapse direction, the label was interpreted as synaptic (and non-synaptic otherwise, 175 

Fig. 3c, “Undir.”). We then augmented the training data by including mirror-reflected 176 

copies of the originally presented synapses, maintaining the labels as synaptic 177 

(irrespective of synapse direction) and non-synaptic (Fig. 3c, “Augmented”). Finally, 178 

we changed the labels of the augmented training data to reflect the direction of 179 

synaptic contact: only synapses in one direction were labeled as synaptic, and non-180 

synaptic in the inverse direction (Fig. 3c “Directed”). 181 

SynEM evaluation 182 

Fig. 3d shows the effect of the choice of features, aggregate statistics, classifier 183 

parameters and label types on SynEM precision and recall. Our initial classifier used 184 

the texture features from Kreshuk et al., 2011 with minor modifications and in 185 

addition the number of voxels of the interface and the two interfacing neurite 186 

segmentation objects (restricted to 160 nm distance from the interface) as a first 187 

shape feature (Table 1). This classifier provided only about 70% precision and recall 188 

(Fig. 3d). We then extended the feature space by adding more texture features 189 

capturing local image statistics (Table 1) and shape features. In particular, we added 190 

filters capturing local image variance in an attempt to represent the “empty” 191 

appearance of postsynaptic spines, and the presynaptic vesicle clouds imposing as 192 

high-frequency high-variance features in the EM images. Also, we added more 193 

subvolumes over which features were aggregated (see Fig. 2b), increasing the 194 

dimension of the feature space from 603 to 3224. Together with additional aggregate 195 

statistics, the classifier reached about 75% precision and recall. A substantial 196 

improvement was obtained by switching from an ensemble of decision-stumps (one-197 

level decision tree) trained by AdaBoostM1 (Freund & Schapire, 1997) as classifier to 198 

decision stumps trained by LogitBoost (Friedman et al., 2000). In addition, the 199 

directed label set proved to be superior. Together, these improvements yielded a 200 

precision and recall of 87% and 86% on the validation set (Fig. 3d).  201 

We then evaluated the best classifier from the validation set (Fig. 3d, ‘Direct & Logit’) 202 

on a separate test set. This test set was a dense volume annotation of all synapses 203 

in a randomly positioned region containing dense neuropil of size 5.8 x 5.8 x 7.2 µm3 204 

from the L4 mouse cortex dataset. All synapses were identified by 2 experts, which 205 

included the reconstruction of all local axons, and validated once more by another 206 

expert on a subset of synapses. In total, the test set contained 235 synapses and 207 

20319 non-synaptic interfaces. SynEM automatically classified these at 88% 208 
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precision and recall (Fig. 3e, F1 score of  0.883). Since the majority of synapses in 209 

the cortex are made onto spines we also evaluated SynEM on all spine synapses in 210 

the test set (n=204 of 235 synapses, 87%, Fig. 3e). On these, SynEM performed 211 

even better, yielding 94% precision and 89% recall. (Fig. 3e, F1 score of 0.914 ).  212 

Comparison to previous methods 213 

We next compared SynEM to previously published synapse detection methods (Fig. 214 

3f, Mishchenko et al., 2010, Kreshuk et al., 2011, Kreshuk et al., 2014, Becker et al., 215 

2012, Roncal et al., 2015, Dorkenwald et al., 2017). Other published methods were 216 

either already shown to be inferior to one of these approaches (Perez et al., 2014, 217 

Marquez Neila et al., 2016) or developed for specific subtypes of synapses, only 218 

(Jagadeesh et al., 2014, Plaza et al., 2014, Huang et al., 2016); these were therefore 219 

not included in the comparison. SynEM outperforms the state-of-the-art methods 220 

when applied to our SBEM data acquired at 3537 nm3 voxel size (Fig. 3f, Fig. 3 – 221 

figure supplement 3). In addition, we applied SynEM to a published 3D EM dataset 222 

acquired at more than 10-fold smaller voxel size (3 x 3 x 30 = 270 nm3) using 223 

automated tape-collecting ultramicrotome-SEM imaging (ATUM, Kasthuri et al., 224 

2015). SynEM also outperforms the method developed for this data (VesicleCNN, 225 

Roncal et al., 2015; Fig. 3f and Fig. 3 – figure supplement 4), indicating that SynEM 226 

is applicable to EM data of various modalities and resolution.  227 

It should furthermore be noted that for connectomics, in addition to the detection of 228 

the location of a synapse, the two neuronal partners that form the synapse and the 229 

direction of the synapse have to be determined. The performance of the published 230 

methods as reported in Fig. 3f only include the synapse detection step. Interestingly, 231 

the recently published method (Dorkenwald et al., 2017) reported that the additional 232 

detection of the synaptic partners yielded a drop of performance of 3% precision and 233 

10% recall (F1 score decreased by about 5% from 0.906 to 0.849) compared to 234 

synapse detection alone (Fig. 3f, see Dorkenwald et al., 2017). This indicates that 235 

the actual performance of this method on our data would be lower when including 236 

partner detection. SynEM, because of the explicit classification of directed neurite 237 

interfaces, in contrast, explicitly provides synapse detection, partner detection and 238 

synapse directionality in one classification step.  239 

 240 
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Remaining SynEM errors, feature importance, and computational 241 

feasibility 242 

Fig. 4a shows examples of correct and incorrect SynEM classification results 243 

(evaluated at θs). Typical sources of errors are vesicle clouds close to membranes 244 

that target nearby neurites (Fig. 4a, FP), Mitochondria in the pre- and/or postsynaptic 245 

process, very small vesicle clouds and/or small PSDs (Fig. 4a, FN), and remaining 246 

SegEM segmentation errors. To estimate the effect of segmentation errors on 247 

SynEM performance, we investigated all false positive and false negative detections 248 

in the test set and checked for the local volume segmentation quality. We found that, 249 

in fact, 26 of the 28 FNs and 22 of the 27 FPs were at locations with a SegEM error 250 

in proximity. Correcting these errors also corrected the SynEM errors in 22 of 48 251 

(46%) of the cases. This indicates that further improvement of volume segmentation 252 

can yield an even further reduction of the remaining errors in SynEM-based 253 

automated synapse detection. 254 

We then asked which of the SynEM features had highest classification power, and 255 

whether the newly introduced texture and shape features contributed to 256 

classification. Boosted decision-stump classifiers allow the ranking of features 257 

according to their classification importance (Fig. 4b). 378 out of 3224 features 258 

contributed to classification (leaving out the remaining features did not reduce 259 

accuracy). The 10 features with highest discriminative power (Table 2) in fact 260 

contained two of the added texture filters (int-var and local entropy) and a shape 261 

feature. The three most distinctive subvolumes (Fig. 4b) were the large presynaptic 262 

subvolume, the border and the small postsynaptic subvolume. This suggests that the 263 

asymmetry in pre- vs. postsynaptic aggregation volumes in fact contributed to 264 

classification performance, with a focus on the presynaptic vesicle cloud and the 265 

postsynaptic density. 266 

Finally, SynEM is sufficiently computationally efficient to be applied to large 267 

connectomics datasets. The total runtime on the 384592 μm3 dataset was 2.6 hours 268 

on a mid-size computational cluster (480 CPU cores, 16GB RAM per core). This 269 

would imply a runtime of 279.9 days for a large 1 mm3 dataset, which is comparable 270 

to the time required for current segmentation methods, but much faster than the 271 

currently required human annotation time (105 to 106 h, Fig. 1c). Note that SynEM 272 

was not yet optimized for computational speed (plain matlab code, see Suppl. Code 273 

and git repository posted at https://gitlab.mpcdf.mpg.de/connectomics/SynEM). 274 
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 275 

SynEM for connectomes 276 

 277 

We so far evaluated SynEM on the basis of the detection performance of single 278 

synaptic interfaces. Since we are interested in measuring the connectivity matrices of 279 

large-scale mammalian cortical circuits (connectomes) we obtained a statistical 280 

estimate of connectome error rates based on synapse detection error rates. We 281 

assume that the goal is a binary connectome containing the information whether 282 

pairs of neurons are connected or not. Automated synapse detection provides us 283 

with weighted connectomes reporting the number of synapses between neurons, 284 

from which we can obtain binary connectomes by considering all neuron pairs with at 285 

least nn synapses as connected (Fig. 5a). Synaptic connections between neurons in 286 

the mammalian cerebral cortex have been found to be established via multiple 287 

synapses per neuron pair (Fig. 5b, Feldmeyer et al., 1999, Feldmeyer et al., 2002, 288 

Feldmeyer et al., 2006, Frick et al., 2008, Markram et al., 1997, range 1-8 synapses 289 

per connection, mean 4.3 ± 1.4 for excitatory connections). The effect of synapse 290 

recall Rs on recall of neuron-to-neuron connectivity Rnn can be estimated (Fig. 5c) for 291 

each threshold nn given the distribution of the number of synapses per connected 292 

neuron pair nsyn. For connectomes in which neuron pairs with at least one detected 293 

synapse are considered as connected (nn = 1), a neuron-to-neuron connectivity 294 

recall Rnn of 97% can be achieved with a synapse detection recall Rs of 65.1% (Fig. 295 

5c, black arrow) if synapse detection is independent between multiple synapses of 296 

the same neuron pair. SynEM achieves 99.4% synapse detection precision Ps at this 297 

recall (Fig. 3e).  298 

The resulting precision of neuron-to-neuron connectivity Pnn then follows from the 299 

total number of synapses in the connectome Nsyn = N2
×cr×<nsyn>, with cr the pairwise 300 

connectivity rate, about 20% for local excitatory connections in cortex (Feldmeyer et 301 

al., 1999), <nsyn> the mean number of synapses per connection  (4.3 ± 1.4, Fig. 5b), 302 

and N2 the size of the connectome. A fraction Rs of these synapses is detected (true 303 

positive detections, TPs). The number of false positive (FP) synapse detections was 304 

deduced from TP and the synapse precision Ps as FP=TP×(1-Ps)/Ps, yielding 305 

Rs×Nsyn×(1-Ps)/Ps false positive synapse detections. These we assumed to be 306 

distributed randomly on the connectome and estimated how often at least nn 307 

synapses fell into a previously empty connectome entry. These we considered as 308 

false positive connectome entries, whose rate yields the binary connectome 309 
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precision Pnn (see Methods for details of the calculation). At Rnn of 97.1%, SynEM 310 

yields a neuron-to-neuron connection precision Pnn of 98.5% (Fig. 5d, black arrow, 311 

Fig. 5e; note that this result is stable against varying underlying connectivity rates 312 

cre=5%..30%, see indicated ranges in Fig. 5e).  313 

For the treatment of inhibitory connections, we followed the notion that synapse 314 

detection performance could be optimized by restricting classifications to interfaces 315 

established by inhibitory axons (as we had analogously seen for restricting analysis 316 

to spine synapses above, Fig. 3e). For this, we evaluated SynEM on a test set of 317 

inhibitory axons for which we classified all neurite contacts of these axons (171 318 

synapses, 9430 interfaces). While the precision and recall for single inhibitory 319 

synapses is lower than for excitatory ones (75% recall, 82% precision, Fig. 5 – figure 320 

supplement 1, SynEM(i)
s), the higher number of synapses per connected cell pair ( 321 

n(i)
syn is on average about 6, Suppl. File 3, Gupta et al., 2000; Markram et al., 2004; 322 

Koelbl et al., 2015; Hoffmann et al., 2015) still yields substantial neuron-to-neuron 323 

precision and recall also for inhibitory connectomes (98% recall, 97% precision, Fig. 324 

5e, Fig. 5 – figure supplement 1, SynEM(i)
nn; this result is stable against varying 325 

underlying inhibitory connectivity rates cri=20%..80%, see ranges indicated in Fig. 326 

5e). Error rates of less than 3% for missed connections and for wrongly detected 327 

connections are well below the noise of synaptic connectivity so far found in real 328 

biological circuits (e.g., Helmstaedter et al., 2013, Bartol et al., 2015), and thus likely 329 

sufficient for a large range of studies involving the mapping of cortical connectomes. 330 

In summary, SynEM provides fully automated detection of synapses, their synaptic 331 

partner neurites and synapse direction for binary mammalian connectomes up to 332 

97% precision and recall, a range which was previously prohibitively expensive to 333 

attain in large-scale volumes by existing methods (Fig. 5e, Fig. 5 – figure supplement 334 

2). 335 

 336 

Local cortical connectome 337 

 338 

We applied SynEM to a sparse local cortical connectome between 104 axons and 339 

100 postsynaptic processes in the dataset from L4 of mouse cortex (Fig. 6a, neurites 340 

were reconstructed using webKnossos (Boergens et al., 2017) and SegEM as 341 

previously reported (Berning et al., 2015)). We first detected all contacts and 342 

calculated the total contact area between each pair of pre- and postsynaptic 343 
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processes (“contactome”, Fig. 6b). We then classified all contacts using SynEM (at 344 

the classification threshold θnn (Table 3) yielding 98.5% precision and 97.1% recall for 345 

excitatory neuron-to-neuron connections and 97.3% precision and 98.5% recall for 346 

inhibitory neuron-to-neuron connections) to obtain the weighted connectome Cw (Fig. 347 

6c). The detected synapses were clustered when they were closer than 1500 nm for 348 

a given neurite pair. This allowed us to concatenate large synapses with multiple 349 

active zones or multiple contributing SegEM segments into one (Fig. 6 – figure 350 

supplement 1). To obtain the binary connectome we thresholded the weighted 351 

connectome at nn  = 1 for excitatory and at nn = 2 for inhibitory neuron-to-neuron 352 

connections (Fig. 6d). The resulting connectome contained 880 synapses distributed 353 

over 536 connections. 354 

Frequency and size of automatically detected synapses 355 

 356 

Finally, to check whether SynEM-detected synapses matched previous reports on 357 

synapse frequency and size, we applied SynEM to half of the entire cortex dataset 358 

used for this study (i.e. a volume of 192296 µm3). SynEM detected 195644 359 

synapses, i.e. a synapse density of 1.02 synapses per µm3, consistent with previous 360 

reports (Merchan-Perez et al., 2014).  361 

We then measured the size of the axon-spine interface of SynEM detected synapses 362 

in the test set (Fig. 7a, b). We find axon-spine interface size of 0.263 ± 0.206 µm2 363 

(mean ± s.d.; range 0.033 – 1.189 µm2; n= 181), consistent with previous reports (de 364 

Vivo et al., 2017: (SW) 0.297 ± 0.297 µm2 (p = 0.518, two-sample two-tailed t-test on 365 

the natural logarithm of the axon-spine interface size), (EW) 0.284 ± 0.275 µm2 (p = 366 

0.826, two-sample two-tailed t-test on the natural logarithm of the axon-spine 367 

interface size). This indicates that, first, synapse detection in our lower-resolution 368 

SBEM data (in-plane image resolution about 11 nm, section thickness about 26-30 369 

nm) yields similar synapse size distributions as in the higher-resolution data in de 370 

Vivo et al., 2017 (in-plane image resolution 5.9 nm; section thickness about 50 nm) 371 

and, secondly, that SynEM-based synapse detection has no obvious bias towards 372 

larger synapses. 373 

 374 

 375 
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 376 

DISCUSSION 377 

 378 

We report SynEM, a toolset for automated synapse detection in EM-based 379 

connectomics. The particular achievement is that the synapse detection for densely 380 

mapped connectomes from the mammalian cerebral cortex is fully automated 381 

yielding below 3% residual error in the binary connectome. Importantly, SynEM 382 

directly provides the location and size of synapses, the involved neurites and the 383 

synapse direction without human interaction. With this, synapse detection is removed 384 

as a bottleneck in large-scale mammalian connectomics. 385 

 386 

Evidently, synapse detection is facilitated in high-resolution EM data, and becomes 387 

most feasible in FIB-SEM data at a resolution of about 4-8 nm isotropic (Kreshuk et 388 

al., 2011, Fig. 3f). Yet, only by compromising resolution for speed (and thus volume) 389 

of imaging, the mapping of large, potentially even whole-brain connectomes is 390 

becoming plausible (Fig. 3f). Therefore it was essential to obtain automated synapse 391 

detection for EM data that is of lower resolution and scalable to such volumes. The 392 

fact that SynEM also outperforms state-of-the-art methods on high-resolution 393 

anisotropic 3D EM data (Fig. 3f, Roncal et al., 2015) indicates that our approach of 394 

segmentation-based interface classification has merits in a wider range of 3D EM 395 

data modalities. 396 

 397 

In addition to high image resolution, recently proposed special fixation procedures 398 

that enhance the extracellular space in 3D EM data (Pallotto et al., 2015) are 399 

reported to simplify synapse detection for human annotators. In such data, direct 400 

touch between neurites has a very high predictive power for the existence of a 401 

(chemical or electrical) synapse, since otherwise neurite boundaries are separated 402 

by extracellular space. Thus, it is expected that such data also substantially simplifies 403 

automated synapse detection. The advantage of SynEM is that it achieves fully 404 

automated synapse detection in conventionally stained and fixated 3D EM data, in 405 

which neurite contact is most frequent at non-synaptic sites. Such data is widely 406 

used, and acquiring such data does not require special fixation protocols. 407 

 408 

Finally, our approach to selectively classify interfaces of inhibitory axons (Fig. 5f, Fig 409 

5 – figure supplement 1) requires discussion. So far, the classification of synapses 410 



14 of 50 
 

into inhibitory (symmetric) vs. excitatory (asymetric) was carried out for a given single 411 

synapse, often in single cross sections of single synapses (e.g. Colonnier, 1968). 412 

With the increasing availability of large-scale 3D EM datasets, however, synapse 413 

types can be defined based on multiple synapses of the same axon (e.g. Kasthuri et 414 

al., 2015). In the case of a dataset sized a cubic millimeter of cortical tissue, most 415 

axons of interneurons will be fully contained in the dataset since most inhibitory 416 

neurons are local. Consequently, the classification of single synapses can be 417 

replaced by the assignment of synapses to the respective axon; the type of axon is 418 

then inferred from the neurons’ somatic and dendritic features. Even for axons which 419 

are not completely contained in the dataset, the assignment to inhibitory or excitatory 420 

synaptic phenotypes can be based on dozens or hundreds rather than single 421 

synapses.  422 

 423 

Together, SynEM resolves synapse detection for high-throughput cortical 424 

connectomics of mammalian brains, removing synapse detection as a bottleneck in 425 

connectomics. With this, SynEM renders the further acceleration of neurite 426 

reconstruction again the key challenge for future connectomic analysis. 427 

  428 
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METHODS 429 

 430 

Annotation time estimates 431 

 432 

Neuropil composition (Fig. 1b) was considered as follows: Neuron density of 157,500 433 

per mm3 (White & Peters, 1993), axon path length density of 4 km per mm3 and 434 

dendrite path length density of 1 km per mm3 (Braitenberg & Schüz, 1998), spine 435 

density of about 1 per µm dendritic shaft length, with about 2 µm spine neck length 436 

per spine (thus twice the dendritic path length), synapse density of 1 synapse per 437 

µm3 (Merchan-Perez et al., 2014) and bouton density of 0.1 – 0.25 per µm axonal 438 

path length (Braitenberg & Schüz, 1998). Annotation times were estimated as 200 - 439 

400 h per mm path length for contouring, 3.7 – 7.2 h/mm path length for 440 

skeletonization (Helmstaedter et al., 2011, Helmstaedter et al., 2013, Berning et al., 441 

2015), 0.6 h/mm for flight-mode annotation (Boergens et al., 2017), 0.1 h/µm3 for 442 

synapse annotation by volume search (estimated form the test set annotation) and 443 

an effective interaction time of 60 s per identified bouton for axon-based synapse 444 

search. All annotation times refer to single-annotator work hours, redundancy may be 445 

increased to reduce error rates in neurite and synapse annotation in these estimates 446 

(see Helmstaedter et al., 2011). 447 

 448 

EM image dataset and segmentation 449 

 450 

SynEM was developed and tested on a SBEM dataset from layer 4 of mouse primary 451 

somatosensory cortex (dataset 2012-09-28_ex145_07x2, K.M.B. and M.H., 452 

unpublished data, see also Berning et al., 2015). Tissue was conventionally en-bloc 453 

stained (Briggman et al., 2011) with standard chemical fixation yielding compressed 454 

extracellular space (compare to Pallotto et al., 2015).  455 

The image dataset was volume segmented using the SegEM algorithm (Berning et 456 

al., 2015). Briefly, SegEM was run using CNN 20130516T2040408,3  and 457 

segmentation parameters as follows: rse = 0; θms = 50; θhm = 0.39; (see last column in 458 

Table 2 in (Berning et al., 2015)). For training data generation, a different voxel 459 

threshold for watershed marker size θms = 10 was used. For test set and local 460 

connectome calculation the SegEM parameter set optimized for whole cell 461 

segmentations was used (rse = 0; θms = 50; θhm = 0.25, see Table 2, Berning et al., 462 

2015). 463 

 464 
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Neurite interface extraction and subvolume definition 465 

 466 

Interfaces between a given pair of segments in the SegEM volume segmentation 467 

were extracted by collecting all voxels from the one-voxel boundary of the 468 

segmentation for which that pair of segments was present in the boundary’s 26-469 

neighborhood. Then, all interface voxels for a given pair of segments were linked by 470 

connected components, and if multiple connected components were created, these 471 

were treated as separate interfaces. Interface components with a size of 150 voxels 472 

or less were discarded.  473 

To define the subvolumes around an interface used for feature aggregation (Fig. 2b), 474 

we collected all voxels that were at a maximal distance of 40, 80 and 160 nm from 475 

any interface voxel and that were within either of the two adjacent segments of the 476 

interface. The interface itself was also considered as a subvolume yielding a total of 477 

7 subvolumes for each interface. 478 

 479 

Feature calculation 480 

 481 

Eleven 3-dimensional image filters with one to 15 instances each (Table 1) were 482 

calculated as follows and aggregated over the 7 subvolumes of an interface using 9 483 

summary statistics, yielding 3224 features per directed interface. Image filters were 484 

applied to cuboids of size 548x548x268 voxels, each, which overlapped by 72,72 485 

and 24 voxels in x,y and z dimension, respectively, to ensure that all interface 486 

subvolumes were fully contained in the filter output. 487 

Gaussian filters were defined by evaluating the unnormalized 3d Gaussian density 488 

function 489 

𝑔̂𝜎(𝑥, 𝑦, 𝑧) =  exp (−
𝑥2

2𝜎𝑥
2 −

𝑦2

2𝜎𝑦
2 −

𝑧2

2𝜎𝑧
2

) 

at integer coordinates (x, y, z) ∈ U = {-fx,-fx-1, … fx} x {-fy,-fy-1, … fy} x {-fz,-fz-1, … fz} 490 

for a given standard deviation σ = (σx, σy, σz) and a filter size f = (fx, fy, fz) and 491 

normalizing the resulting filter by the sum over all its elements 492 

𝑔𝜎(𝑥, 𝑦, 𝑧) =
𝑔̂𝜎(𝑥, 𝑦, 𝑧)

∑ 𝑔̂𝜎(𝑥′, 𝑦′, 𝑧′)(𝑥′,𝑦′,𝑧′)∈𝑈
.  

First and second order derivatives of Gaussian filters were defined as 493 
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𝜕

𝜕𝑥
𝑔𝜎(𝑥, 𝑦, 𝑧) = 𝑔𝜎(𝑥, 𝑦, 𝑧)

−𝑥

𝜎𝑥
2 , 

𝜕2

𝜕𝑥2
𝑔𝜎(𝑥, 𝑦, 𝑧) = 𝑔𝜎(𝑥, 𝑦, 𝑧) (

𝑥2

𝜎𝑥
2 − 1)

1

𝜎𝑥
2, 

𝜕

𝜕𝑥

𝜕

𝜕𝑦
𝑔𝜎(𝑥, 𝑦, 𝑧) = 𝑔𝜎(𝑥, 𝑦, 𝑧)

𝑥𝑦

𝜎𝑥
2𝜎𝑦

2. 

and analogously for the other partial derivatives. Normalization of gσ and evaluation 494 

of derivatives of Gaussian filters was done on U as described above. Filters were 495 

applied to the raw data I via convolution (denoted by ) and we defined the image’s  496 

Gaussian derivatives as 497 

𝐼𝑥
𝜎(𝑥, 𝑦, 𝑧) = 𝐼 ∗

𝜕𝑔𝜎

𝜕𝑥
(𝑥, 𝑦, 𝑧), 

𝐼𝑥𝑦
𝜎 (𝑥, 𝑦, 𝑧) = 𝐼 ∗

𝜕2𝑔𝜎

𝜕𝑥𝜕𝑦
(𝑥, 𝑦, 𝑧) 

and analogously for the other partial derivatives. 498 

Gaussian smoothing was defined as Igσ.  499 

Difference of Gaussians was defined as (Igσ - Igkσ), where the standard deviation of 500 

the second Gaussian filter is multiplied element-wise by the scalar k.  501 

Gaussian gradient magnitude was defined as 502 

√𝐼𝑥
𝜎(𝑥, 𝑦, 𝑧)2 + 𝐼𝑦

𝜎(𝑥, 𝑦, 𝑧)2 + 𝐼𝑧
𝜎(𝑥, 𝑦, 𝑧)2. 

Laplacian of Gaussian was defined as  503 

𝐼𝑥𝑥
𝜎 (𝑥, 𝑦, 𝑧) +  𝐼𝑦𝑦

𝜎 (𝑥, 𝑦, 𝑧) +  𝐼𝑧𝑧
𝜎 (𝑥, 𝑦, 𝑧)  

Structure tensor S was defined as a matrix of products of first order Gaussian 504 

derivatives, convolved with an additional Gaussian filter (window function) gσw: 505 

𝑆𝑥𝑦 = (𝐼𝑥
𝜎𝐷𝐼𝑦

𝜎𝐷) ∗ 𝑔𝜎𝑤
 

and analogously for the other dimensions, with standard deviation σD of the image’s 506 

Gauss derivatives. Since S is symmetric, only the diagonal and upper diagonal 507 
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entries were determined, the eigenvalues were calculated and sorted by increasing 508 

absolute value. 509 

The Hessian matrix was defined as the matrix of second order Gaussian derivatives:  510 

𝐻𝑥𝑦 =  𝐼𝑥𝑦
𝜎 , 

and analogously for the other dimensions. Eigenvalues were calculated as described 511 

for the Structure tensor. 512 

The local entropy feature was defined as 513 

− ∑ 𝑝

𝐿∈{0,…,255}

(𝐿) log2 𝑝(𝐿), 

where p(L) is the relative frequency of the voxel intensity in the range {0, …, 255} in a 514 

given neighborhood U of the voxel of interest (calculated using the entropyfilt function 515 

in MATLAB). 516 

Local standard deviation for a voxel at location (x, y, z) was defined by  517 

√
1

|𝑈| − 1
∑ 𝐼(𝑥′, 𝑦′, 𝑧′)

(𝑥′,𝑦′,𝑧′)∈𝑈

−  
1

|𝑈|(|𝑈| − 1)
( ∑ 𝐼(𝑥′, 𝑦′, 𝑧′)

(𝑥′,𝑦′,𝑧′)∈𝑈

)

2

, 

for the neighborhood U of location (x, y, z) with |U| number of elements and 518 

calculated using MATLABs stdfilt function. 519 

Sphere average was defined as the mean raw data intensity for a spherical 520 

neighborhood Ur with radius r around the voxel of interest, with   521 

𝑈𝑟 = {(𝑥, 𝑦, 𝑧)|𝑥2 +  𝑦2 +  (2𝑧)2  ≤ 𝑟2} ∩ 𝑍3, 

where Z3 is the 3 dimensional integer grid; x,y,z are voxel indices; z anisotropy was 522 

approximately corrected. 523 

The intensity/variance feature for voxel location (x, y, z) was defined as 524 

∑ 𝐼(𝑥′, 𝑦′, 𝑧′)2

(𝑥′,𝑦′,𝑧′)∈𝑈

− ( ∑ 𝐼(𝑥′, 𝑦′, 𝑧′)

(𝑥′,𝑦′,𝑧′)∈𝑈

)

2

 , 

for the neighborhood U of location (x, y, z). 525 
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The set of parameters for which filters were calculated is summarized in Table 1.  526 

11 shape features were calculated for the border subvolume and the two 160 nm-527 

restricted subvolumes, respectively. For this, the center locations (midpoints) of all 528 

voxels of a subvolume were considered. Shape features were defined as follows: 529 

The number of voxel feature was defined as the total number of voxels in the 530 

subvolumes. The voxel based diameter was defined as the diameter of a sphere with 531 

the same volume as the number of voxels of the subvolumes. Principal axes lengths 532 

were defined as the three eigenvalues of the covariance matrix of the respective 533 

voxel locations.  Principal axes product was defined as the scalar product of the first 534 

principal components of the voxel locations in the two 160 nm-restricted subvolumes. 535 

Voxel based convex hull was defined as the number of voxels within the convex hull 536 

of the respective subvolume voxels (calculated using the convhull function in 537 

MATLAB). 538 

 539 

Generation of training and validation labels 540 

 541 

Interfaces were annotated by 3 trained undergraduate students using a custom-542 

written GUI (in MATLAB, Fig. 3 – figure supplement 1). A total of 40 non-overlapping 543 

rectangular volumes within the center 86 x 52 x 86 μm3 of the dataset were selected 544 

(39 sized 5.6 x 5.6 x 5.6 μm3 each and one of size 9.6 x 6.8 x 8.3 μm3). Then, all 545 

interfaces within these volumes were extracted as described above. Interfaces with a 546 

center of mass less than 1.124 µm from the volume border were not considered. For 547 

each interface, a raw data volume of size (1.6 x 1.6 x 0.7–1.7) μm3, centered on the 548 

center of mass of the interface voxel locations was presented to the annotator. When 549 

the center of mass was not part of the interface, the closest interface voxel was used. 550 

The raw data was rotated such that the second and third principal components of the 551 

interface voxel locations (restricted to a local surround of 15x15x7 voxels around the 552 

center of mass of the interface) defined the horizontal and vertical axes of the 553 

displayed images. First, the image plane located at the center of mass of the 554 

interface was shown. The two segmentation objects were transparently overlaid (Fig. 555 

3 – figure supplement 1) in separate colors (the annotator could switch the labels off 556 

for better visibility of raw data). The annotator had the option to play a video of the 557 

image stack or to manually browse through the images. The default video playback 558 

started at the first image. An additional video playback mode started at the center of 559 

mass of the interface, briefly transparently highlighted the segmentation objects of 560 
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the interface, and then played the image stack in reverse order to the first plane and 561 

from there to the last plane. In most cases, this already yielded a decision. In 562 

addition, annotators had the option to switch between the 3 orthogonal reslices of the 563 

raw data at the interface location (Fig. 3 – figure supplement 1). The annotators were 564 

asked to label the presented interfaces as non-synaptic or synaptic. For the synaptic 565 

label, they were asked to indicate the direction of the synapse (see Fig. 3 – figure 566 

supplement 1). In addition to the annotation label interfaces could be marked as 567 

“undecided”. Interfaces were annotated by one annotator each. The interfaces 568 

marked as undecided were validated by an expert neuroscientist. In addition, all 569 

synapse annotations were validated by an expert neuroscientist, and a subset of 570 

non-synaptic interfaces was cross-checked. Together, 75,383 interfaces (1858 571 

synaptic, 73,525 non-synaptic) were labeled this way. Of these, the interfaces from 8 572 

label volumes (391 synaptic and 11906 non-synaptic interfaces) were used as 573 

validation set; the interfaces from the other 32 label volumes were used for training. 574 

 575 

SynEM classifier training and validation 576 

 577 

The target labels for the undirected, augmented and directed label sets were defined 578 

as described in the Results (Fig. 3c). We used boosted decision stumps (level-one 579 

decision trees) trained by the AdaBoostM1 (Freund & Schapire, 1997) or LogitBoost 580 

(Friedman et al., 2000) implementation from the MATLAB Statistical Toolbox 581 

(fitensemble). In both cases the learning rate was set to 0.1 and the total number of 582 

weak learners to 1500. Misclassification cost for the synaptic class was set to 100. 583 

Precision and recall values of classification results were reported with respect to the 584 

synaptic class. For validation, the undirected label set was used, irrespective of the 585 

label set used in training. If the classifier was trained using the directed label set then 586 

the thresholded prediction for both orientations were combined by logical OR. 587 

 588 

Test set generation and evaluation 589 

 590 

To obtain an independent test set disjunct from the data used for training and 591 

validation, we randomly selected a volume of size 512 x 512 x 256 voxels (5.75 x 592 

5.75 x 7.17 μm3) from the dataset that contained no soma or dominatingly large 593 

dendrite. One volume was not used because of unusually severe local image 594 
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alignment issues which are meanwhile solved for the entire dataset. The test volume 595 

had the bounding box [3713, 2817, 129, 4224, 3328, 384] in the dataset. First, the 596 

volume was searched for synapses (see Fig. 1d) in webKnossos (Boergens et al., 597 

2017) by an expert neuroscientist. Then, all axons in the volume were skeleton-598 

traced using webKnossos. Along the axons, synapses were searched (strategy in 599 

Fig. 1e) by inspecting vesicle clouds for further potential synapses. Afterwards the 600 

expert searched for vesicle clouds not associated with any previously traced axon 601 

and applied the same procedure as above. In total, that expert found 335 potential 602 

synapses. A second expert neuroscientist used the tracings and synapse 603 

annotations from the first expert to search for further synapse locations. The second 604 

expert added 8 potential synapse locations. All 343 resulting potential synapses were 605 

collected and independently assessed by both experts as synaptic or not. The 606 

experts labeled 282 potential locations as synaptic, each. Of these, 261 were in 607 

agreement. The 42 disagreement locations (21 from each annotator) were re-608 

examined jointly by both experts and validated by a third expert on a subset of all 609 

synapses. 18 of the 42 locations were confirmed as synaptic, of which one was just 610 

outside the bounding box. Thus, in total, 278 synapses were identified. The precision 611 

and recall of the two experts in their independent assessment with respect to this 612 

final set of synapses was 93.6%, 94.6% (expert 1) and 97.9%, 98.9% (expert 2), 613 

respectively. 614 

Afterwards all shaft synapses were labeled by the first expert and proofread by the 615 

second. Subsequently, the synaptic interfaces were voxel-labeled to be compatible 616 

with the method by Becker et al. This initial test set comprised 278 synapses, of 617 

which 36 were labeled as shaft/inhibitory.  618 

Next, all interfaces between pairs of segmentation objects in the test volume were 619 

extracted as described above. Then, the synapse labels were assigned to those 620 

interfaces whose border voxels had any overlap with one of the 278 voxel-labeled 621 

synaptic interfaces. Afterwards, these interface labels were again proof-read by an 622 

expert neuroscientist. Finally, interfaces closer than 160 nm from the boundary of the 623 

test volume were excluded to ensure that interfaces were fully contained in the test 624 

volume. The final test set comprised 235 synapses out of which 31 were labeled as 625 

shaft/inhibitory. With this we obtained a high-quality test set providing both voxel-626 

labeled synapses and synapse labels for interfaces, to allow the comparison of 627 

different detection methods. 628 
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For the calculation of precision and recall, a synapse was considered detected if at 629 

least one interface that had overlap with the synapse was detected by the classifier 630 

(TPs); a synapse was considered missed if no overlapping interface of a given 631 

synapse was detected (FNs); and a detection was considered false positive (FP) if 632 

the corresponding interface did not overlap with any labeled synapse.  633 

 634 

Inhibitory synapse detection 635 

 636 

The labels for inhibitory-focused synapse detection were generated using skeleton 637 

tracings of inhibitory axons. Two expert neuroscientists used these skeleton tracings 638 

to independently detect all synapse locations along the axons. Agreeing locations 639 

were considered synapses and disagreeing locations were resolved jointly by both 640 

annotators. The resulting test set contains 171 synapses. Afterwards, all SegEM 641 

segments of the consensus postsynaptic neurite were collected locally at the 642 

synapse location. For synapse classification all interfaces in the dataset were 643 

considered that contained one SegEM segment located in one of these inhibitory 644 

axons. Out of these interfaces all interfaces were labeled synaptic that were between 645 

the axon and a segment identified as postsynaptic. The calculation of precision and 646 

recall curves was done as for the dense test set (see above) by considering a 647 

synapse detected if at least one interface overlapping with it was detected by the 648 

classifier (TPs); a synapse was considered missed if no interface of a synapse was 649 

detected (FNs); and a detection was considered false positive (FP) if the 650 

corresponding interface did not overlap with any labeled synapse. 651 

 652 

Comparison to previous work 653 

 654 

The approach of Becker et al., 2012 was evaluated using the implementation 655 

provided in Ilastik (Sommer et al., 2011). This approach requires voxel labels of 656 

synapses. We therefore first created training labels: an expert neuroscientist created 657 

sparse voxel labels at interfaces between pre- and postsynaptic processes and twice 658 

as many labels for non-synaptic voxels for five cubes of size 3.4 x 3.4 x 3.4 μm3 that 659 

were centered in five of the volumes used for training SynEM. Synaptic labels were 660 

made for 115 synapses (note that the training set in Becker et al., 2012 only 661 

contained 7-20 synapses). Non-synaptic labels were made for two training cubes 662 
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first. The non-synaptic labels of the remaining cubes were made in an iterative 663 

fashion by first training the classifier on the already created synaptic and non-664 

synaptic voxel labels and then adding annotations specifically for misclassified 665 

locations using Ilastik. Eventually, non-synaptic labels in the first two training cubes 666 

were extended using the same procedure.  667 

For voxel classification all features proposed in (Becker et al., 2012) and 200 weak 668 

learners were used. The classification was done on a tiling of the test set into cubes 669 

of size 256x256x256 voxels (2.9 x 2.9 x 7.2 μm3) with a border of 280 nm around 670 

each tile. After classification, the borders were discarded, and tiles were stitched 671 

together. The classifier output was thresholded and morphologically closed with a 672 

cubic structuring element of three voxels edge length. Then, connected components 673 

of the thresholded classifier output with a size of at least 50 voxels were identified. 674 

Synapse detection precision and recall rates were determined as follows: A ground 675 

truth synapse (from the final test set) was considered detected (TP) if it had at least a 676 

single voxel overlap with a predicted component. A ground truth synapse was 677 

counted as a false negative detection if it did not overlap with any predicted 678 

component (FN). To determine false positive classifications, we evaluated the center 679 

of the test volume (shrunk by 160 nm from each side to 484 x 484 x 246 voxels) and 680 

counted each predicted component that did not overlap with any of the ground truth 681 

synapses as false positive detection (FP). For this last step, we used all ground truth 682 

synapses from the initial test set, in favor of the Becker et al. classifier. 683 

For comparison with (Kreshuk et al., 2014) the same voxel training data as for 684 

(Becker et al., 2012) was used. The features provided by Ilastik up to a standard 685 

deviation of 5 voxels for the voxel classification step were used. For segmentation of 686 

the voxel probability output map the graph cut segmentation algorithm of Ilastik was 687 

used with label smoothing ([1, 1, 0.5] voxel standard deviation), a voxel probability 688 

threshold of 0.5 and graph cut constant of λ = 0.25. Objects were annotated in five 689 

additional cubes of size 3.4 x 3.4 x 3.4 μm3  that were centered in five of the interface 690 

training set cubes different from the one used for voxel prediction resulting in 299 691 

labels (101 synaptic, 198 non-synaptic). All object features provided by Ilastik were 692 

used for object classification. The evaluation on the test set was done as for (Becker 693 

et al., 2012).  694 

For comparison with (Dorkenwald et al., 2017) six of the 32 training cubes used for 695 

interface classification with a total volume of 225 μm3 were annotated with voxel 696 

labels for synaptic junctions, vesicle clouds and mitochondria. The annotation of 697 
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vesicle clouds and mitochondria was done using voxel predictions of a convolutional 698 

neural network (CNN) trained on mitochondria, vesicle clouds and membranes. The 699 

membrane predictions were discarded and the vesicle clouds and mitochondria 700 

labels were first proofread by undergraduate students and then twice by an expert 701 

neuroscientist. The voxels labels for synaptic junctions were added by an expert 702 

neuroscientist based on the identified synapses in the interface training data. Overall 703 

310 synapses were annotated in the training volume. A recursive multi-class CNN 704 

was trained on this data with the same architecture and hyperparameter settings as 705 

described in (Dorkenwald et al., 2017) using the ElektroNN framework. For the 706 

evaluation of synapse detection performance only the synaptic junction output was 707 

used. The evaluation on the test set was done as for (Becker et al., 2012) with a 708 

connected component threshold of 250 voxels. 709 

 710 

Evaluation on the dataset from Kasthuri et al., 2015 711 

 712 

The image data, neurite and synapse segmentation from (Kasthuri et al., 2015) 713 

hosted on openconnecto.me (kasthuri11cc, kat11segments, kat11synapses) was 714 

used (downloaded using the provided scripts at https://github.com/neurodata-715 

arxiv/CAJAL ). The segmentation in the bounding box [2432, 7552; 6656, 10112; 716 

769, 1537] (resolution 1) was adapted to have a one-voxel boundary between 717 

segments by first morphologically eroding the original segmentation with a 3-voxel 718 

cubic structuring element and running the MATLAB watershed function on the 719 

distance-transform of the eroded segmentation on a tiling with cubes of size [1024, 720 

1024, 512] voxels. Since the Kasthuri et al., 2015 segmentation in the selected 721 

bounding box was not dense, voxels with a segment id of zero in the original 722 

segmentation whose neighbors at a maximal distance of 2 voxels (maximum-723 

distance) also all had segment ids zero were set to segment id zero in the adapted 724 

segmentation. All segments in the adapted segmentation that were overlapping with 725 

a segment in the original segmentation were set to the id of the segment in the 726 

original segmentation. The bounding box [2817, 6912; 7041, 10112; 897, 1408] of 727 

the resulting segmentation was tiled into non-overlapping cubes of [512, 512, 256] 728 

voxels. For all synapses in the synapse segmentation the pre- and postsynaptic 729 

segment of the synapse were marked using webKnossos (Boergens et al., 2017) and 730 

all interfaces between the corresponding segments at a maximal distance of 750 nm 731 

to the synapse centroid that were also overlapping with an object in the synapse 732 

https://github.com/neurodata-arxiv/CAJAL
https://github.com/neurodata-arxiv/CAJAL
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segmentation were associated to the corresponding synapse and assigned a unique 733 

group id. Only synapses labeled as “sure” in Kasthuri et al., 2015 were evaluated. All 734 

interfaces with a center of mass in the region ac3 with the bounding box [5472, 6496; 735 

8712, 9736; 1000, 1256] were used for testing. All interfaces with a center of mass at 736 

a distance of at least 1 μm to ac3 were used for training if there was no interface 737 

between the same segment ids in the test set. Interfaces between the same segment 738 

ids as an interface in the test set were only considered for training if the distance to 739 

ac3 was above 2 μm. For feature calculation the standard deviation of Gaussian 740 

filters was adapted to the voxel size 6 x 6 x 30 nm of the data (i.e. s in Table 2 was 741 

set to 12/2 in x- and y-dimension and 12/30 in z-dimension). The directed label set 742 

approach was used for classification. The calculation of precision recall rates was 743 

done as described above (“test set generation and evaluation”). 744 

 745 

Pairwise connectivity model 746 

 747 

The neuron-to-neuron connection recall was calculated assuming an empirical 748 

distribution p(n) of the number of synapses n between connected excitatory neurons 749 

given by published studies (see Supp. Table 2, Feldmeyer et al., 1999, Feldmeyer et 750 

al., 2002, Feldmeyer et al., 2006, Frick et al., 2008, Markram et al., 1997). For 751 

inhibitory connections we used a fixed value of 6 synapses (see Supp. Table 3, 752 

Koelbl et al., 2015, Hoffmann et al., 2015, Gupta et al., 2000, Markram et al., 2004). 753 

We further assumed that the number of retrieved synapses is given by a binomial 754 

model with retrieval probability given by the synapse classifier recall Rs on the test 755 

set: 756 

𝑃(𝑘 ≥ 
𝑛𝑛

|𝑅𝑠) =  ∑ 𝐵𝑖𝑛(𝑘 ≥ 
𝑛𝑛

|𝑛, 𝑅𝑠)𝑝(𝑛)

𝑛

, 

Where nn is the threshold on the number of synapses between a neuron pair to 757 

consider it as connected (see Fig. 5a). This equates to the neuron-to-neuron recall: 758 

Rnn = P(k ≥ nn | Rs). 759 

To compute the neuron-to-neuron precision, we first calculated the expected number 760 

of false positive synapse detections (FPs) made by a classifier with precision Ps and 761 

recall Rs:  762 
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𝐹𝑃𝑠 =  
(1 − 𝑃𝑠)

𝑃𝑠
𝑅𝑠𝑁𝑠𝑦𝑛 

where Nsyn is the total number of synapses in a dataset calculated from the average 763 

number of synapses per connected neuron pair <nsyn> times the number of 764 

connected neuron pairs Ncon and cr is the connectivity ratio given by Ncon/N
2 with N 765 

the number of neurons in the connectome. 766 

We then assumed that these false positive synapse detections occur randomly and 767 

therefore are assigned to one out of N2 possible neuron-to-neuron connections with a 768 

frequency FPs/N
2.  769 

We then used a Poisson distribution to estimate the number of cases in which at 770 

least nn FPs synapses would occur in a previously zero entry of the connectome, 771 

yielding a false positive neuron-to-neuron connection (FPnn). 772 

𝐹𝑃𝑛𝑛 = 𝑁2(1 − 𝑐𝑟)𝑃𝑜𝑖(𝑥 ≥ 
𝑛𝑛

|𝐹𝑃𝑠/𝑁2). 

Finally, the true positive detections of neuron-to-neuron connections in the 773 

connectome TPnn are given in terms of the neuron-to-neuron connection recall Rnn by 774 

𝑇𝑃𝑛𝑛 = 𝑁2 𝑐𝑟𝑅𝑛𝑛. 

Together, the neuron-to-neuron connection precision Pnn is given by 775 

𝑃𝑛𝑛 =  
𝑇𝑃𝑛𝑛

𝑇𝑃𝑛𝑛 + 𝐹𝑃𝑛𝑛
=

𝑐𝑟𝑅𝑛𝑛

𝑐𝑟𝑅𝑛𝑛 + (1 − 𝑐𝑟)𝑃𝑜𝑖(𝑥 ≥ 
𝑛𝑛

|𝐹𝑃𝑠/𝑁2) 
. 

The connectivity ratio was set to cr = 0.2 (Feldmeyer et al., 1999) for excitatory and to 776 

0.6 for inhibitory connections (Gibson et al., 1999, Koelbl et al., 2015). 777 

 778 

Local connectome 779 

 780 

For determining the local connectome (Fig. 6) between 104 pre- and 100 781 

postsynaptic processes, we used 104 axonal skeleton tracings (traced at 1 to 5-fold 782 

redundancy) and 100 dendrite skeleton tracings. 10 axons were identified as 783 

inhibitory and are partially contained in the inhibitory test set. All volume objects 784 

which overlapped with any of the skeleton nodes were detected and concatenated to 785 

a given neurite volume. Then, all interfaces between pre- and postsynaptic 786 

processes were classified by SynEM. The area of each interface was calculated as in 787 



27 of 50 
 

(Berning et al., 2015) and the total area of all contacts between all neurite pairs was 788 

calculated (Fig. 6b). To obtain the weighted connectome Cw (Fig. 6c), we applied the 789 

SynEM scores threshold θnn (Table 3) for the respective presynaptic type (excitatory, 790 

inhibitory). Detected synaptic interfaces were clustered using hierarchical clustering 791 

(single linkage, distance cutoff 1,500 nm) if the interfaces were between the same 792 

pre- and postsynaptic objects. To obtain the binary connectome Cbin (Fig. 6d) we 793 

thresholded the weighted connectome at the connectome threshold nn = 1 for 794 

excitatory and nn = 2 for inhibitory connections (Table 3). The overall number of 795 

synapses in the dataset was calculated by considering all interfaces above the score 796 

threshold for the best single synapse performance (θs) as synaptic. To obtain the 797 

final synapse count the retrieved synaptic interfaces were clustered using 798 

hierarchical clustering with single linkage and a distance cutoff between the centroids 799 

of the interfaces of 320.12 nm (this distance cutoff was obtained by optimizing the 800 

synapse density prediction on the test set). 801 

 802 

Axon-spine interface area comparison 803 

 804 

For the evaluation of axon-spine interface area (ASI) all spine synapses in the test 805 

set were considered for which SynEM had detected at least one overlapping neurite 806 

interface (using θs for spine synapses, Fig. 3e). The ASI of a detected synapse was 807 

calculated by summing the area of all interfaces between segmentation objects that 808 

overlapped with the synapse. For comparison to ASI distributions obtained at higher 809 

imaging resolution in a recent study (spontaneous wake (SW) and enforced wake 810 

(EW) conditions reported in Table S1 in de Vivo et al., 2017), it was assumed that the 811 

ASI distributions are lognormal (see de Vivo et al., 2017, Fig. 2B). Two-sample two-812 

tailed t-tests were performed for comparing the natural logarithmic values of the 813 

SynEM-detected ASI from the test set (log ASI -1.60 ± 0.74, n=181; mean ± s.d.) with 814 

the lognormal distributions for SW and EW from de Vivo et al., 2017,  (log ASI -1.56 815 

± 0.83, n=839, SW; -1.59 ± 0.81, n=836, EW; mean ± s.d.), p = 0.5175 (SW) and p = 816 

0.8258 (EW). 817 

 818 
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 819 

 820 

Code and data availability 821 

 822 

All code used to train and run SynEM is available under the MIT license in the 823 

Supplementary Code and will be made available at 824 

https://gitlab.mpcdf.mpg.de/connectomics/SynEM upon publication. To run SynEM, 825 

please follow instructions in the readme.md file in Suppl. Code. Data used to train 826 

and evaluate SynEM will be made available at https://synem.rzg.mpg.de/webdav/. 827 

 828 

  829 

https://gitlab.mpcdf.mpg.de/connectomics/SynEM
https://synem.rzg.mpg.de/webdav/
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FIGURE LEGENDS 842 

 843 

Figure 1  844 

The challenge of synapse detection in connectomics. (a) Sketch of mouse primary 845 

somatosensory cortex (S1) with circuit modules (“barrels”) in cortical layer 4 and 846 

minimum required dataset extent for a “barrel” dataset (250 µm edge length) and a 847 

dataset extending over the whole cortical depth from pia to white matter (WM) (1 mm 848 

edge length). (b) Number of synapses and neurons, total axonal, dendritic and spine 849 

path length for the example datasets in (a) (White & Peters, 1993, Braitenberg & 850 

Schüz, 1998, Merchan-Perez et al., 2014). (c) Reconstruction time estimates for 851 

neurites and synapses; For synapse search strategies see sketches in d,e. Dashed 852 

arrows: latest skeletonization tools (webKnossos, Boergens et al., 2017) allow for a 853 

further speed up of neurite skeletonization by about 5-to-10-fold, leaving synapse 854 

detection as the main annotation bottleneck. (d) Volume search for synapses by 855 

visually investigating 3d image stacks and keeping track of already inspected 856 

locations takes about 0.1 h/µm3. (e) Axon-based synapse detection by following 857 

axonal processes and detecting synapses at boutons consumes about 1 min per 858 

bouton. (f) Examples of synapses imaged at an in-plane voxel size of 6 nm and (g) 859 

12 nm in conventionally en-bloc stained and fixated tissue (Briggman et al., 2011, 860 

Hua et al., 2015) imaged using SBEM (Denk & Horstmann, 2004). Arrows: synapse 861 

locations. Note that synapse detection in high-resolution data is much facilitated in 862 

the plane of imaging. Large-volume image acquisition is operated at lower resolution, 863 

requiring better synapse detection algorithms. (h) Synapse shown in 3D EM raw 864 

data, resliced in the 3 orthogonal planes. Scale bars in f and h, 500 nm. Scale bar in f 865 

applies to g. 866 

  867 
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Figure 2   868 

Synapse detection by classification of neurite interfaces. (a) Definition of interfaces 869 

used for synapse classification in SynEM. Raw EM data (left) is first volume 870 

segmented (using SegEM, Berning et al., 2015). Neighboring volume segments are 871 

identified (right). (b) Definition of perisynaptic subvolumes used for synapse 872 

classification in SynEM consisting of a border (red) and subvolumes adjacent to the 873 

neurite interface extending to distances of 40, 80 and 160 nm. (c) Example outputs 874 

of two texture filters: the difference of Gaussians (DoG) and the intensity/variance 875 

filter (int./var.). Note the clear signature of postsynaptic spine heads (right). (d) 876 

Distributions of int/var. texture filter output for image voxels at a synaptic (top) and 877 

non-synaptic interface (bottom). Medians over subvolumes are indicated (arrows, 878 

color scale as in b). (e) SynEM flow chart. Scale bars, 500 nm. Scale bar in a applies 879 

to a,b. 880 

  881 
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Figure 3 882 

SynEM training and evaluation. (a) Histogram of SynEM scores calculated on the 883 

validation set. Fully automated synapse detection is obtained by thresholding the 884 

SynEM score at threshold θ. (b) SynEM scores for the two possible directions of 885 

interfaces. Note that SynEM scores are disjunct in a threshold regime used for best 886 

single synapse performance (θs) and best neuron-to-neuron recall and precision 887 

(θnn), see Fig. 5, indicating a clear bias towards one of the two possible synaptic 888 

directions. (c) Strategy for label generation. Based on annotator labels (Ann. Label), 889 

three types of label sets were generated: Initial label set ignored interface orientation 890 

(Undir.); Augmented label set included mirror-reflected interfaces (Augment.); 891 

Directed label set used augmented data but considered only one synaptic direction 892 

as synaptic (Directed, see also Fig. 3 – figure supplement 1). (d) Development of the 893 

SynEM classifier. Classification performance for different features, aggregation 894 

statistics, classifier parameters and label sets. Init: initial classifier used (see Table 895 

1). The initial classifier was extended by using additional features (Add feat, see 896 

Table 1, first row), 40 and 80 nm subvolumes for feature aggregation (Add subvol, 897 

see Fig. 2b) and aggregate statistics (Add stats, see Table 1). Direct: Classifier 898 

trained on directed label set (see Fig. 3c). Logit: Classifier trained on full feature 899 

space using LogitBoost. Augment & Logit: Logit classifier trained on augmented label 900 

set (see Fig. 3c). Direct & Logit: Logit classifier trained on directed label set (see Fig. 901 

3c). (e) Test set performance on 3D SBEM data of SynEM (purple) evaluated for 902 

spine and shaft synapses (all synapses, solid line) and for spine synapses (exc. 903 

synapses, dashed line), only. Threshold values for optimal single synapse detection 904 

performance (black circle) and an optimal connectome reconstruction performance 905 

(black square, see Fig. 5). (see also Fig. 3 – figure supplement 2) (f) Relation 906 

between 3D EM imaging resolution, imaging speed and 3D EM experiment duration 907 

(top), exemplified for a dataset sized 1 mm3. Note that the feasibility of experiments 908 

strongly depends on the chosen voxel size. Bottom: published synapse detection 909 

performance (reported as F1 score) in dependence of the respective imaging 910 

resolution (see also Suppl. File 1). dark blue, Mishchenko et al., 2010; cyan, Kreshuk 911 

et al., 2011; light gray, Becker et al., 2012; dark gray, Kreshuk et al., 2014; red, 912 

Roncal et al., 2015; green, Dorkenwald et al., 2017; Black brackets indicate direct 913 

comparison of SynEM to top-performing methods: SynEM vs Roncal et al., 2015 on 914 

ATUM-SEM dataset (Kasthuri et al., 2015); SynEM vs Dorkenwald et al., 2017 and 915 

Becker et al., 2012 on our test set. See Fig. 3 – figure supplement 3 for comparison 916 

of Precision-Recall curves. Note that SynEM outperforms the previously top-917 
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performing methods. Note also that most methods provide synapse detection, but 918 

require the detection of synaptic partners and synapse direction in a separate 919 

classification step. Gray solid line: drop of partner detection performance compared 920 

to synapse detection in Dorkenwald et al., 2017; dashed gray lines, analogous 921 

possible range of performance drop as reported for bird dataset in Dorkenwald et al., 922 

2017. SynEM combines synapse detection and partner detection into one 923 

classification step.  924 

  925 



34 of 50 
 

Figure 4 926 

SynEM classification and feature importance. (a) SynEM classification examples at 927 

θs (circle in e). True positive (TP), true negative (TN), False negative (FN) and false 928 

positive (FP) interface classifications (blue arrow, classified interface) shown as 3 929 

image planes spaced by 56 nm (i.e. every second SBEM data slice, top to bottom). 930 

Note that synapse detection in 3D SBEM data requires inspection of typically 10-20 931 

consecutive image slices (see Synapse Gallery in Supplementary File 4 for 932 

examples). 1: presynaptic; 2: postsynaptic; x: non-synaptic. Note for the FP example 933 

that the axonal bouton (1) innervates a neighboring spine head, but the interface to 934 

the neurite under classification (x) is non-synaptic (blue arrow). (b) Ranked 935 

classification importance of SynEM features. All features (top left), relevance of 936 

feature quality (bottom left), subvolumes (top right) and pooling statistics (bottom 937 

right). Note that only 378 features contribute to classification. See Table 3 for the 10 938 

feature instances of highest importance, Table 1 for feature name abbreviations, and 939 

text for details. Scale bars, 500 nm. 940 
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 942 

Figure 5 943 

Effect of SynEM classification performance on error rates in automatically mapped 944 

binary connectomes. (a) Sketch of a weighted connectome (left) reporting the 945 

number of synapses per neuron-to-neuron connection, transformed into a binary 946 

connectome (middle) by considering neuron pairs with at least nn synapses as 947 

connected. (b) Distribution of reported synapse number for connected excitatory 948 

neuron pairs obtained from paired recordings in rodent cerebral cortex (Feldmeyer et 949 

al., 1999, Feldmeyer et al., 2002, Feldmeyer et al., 2006, Frick et al., 2008, Markram 950 

et al., 1997). Average distribution (cyan) is used for the precision estimates in the 951 

following (see Suppl. File 2). (c) Relationship between SynEM recall for single 952 

interfaces (synapses) Rs and the ensuing neuron-to-neuron connectome recall Rnn 953 

(recall in Cbin, a) for each of the excitatory cortico-cortical connections (summarized 954 

in b) and for connectome binarization thresholds of nn = 1 and nn = 2 (full and 955 

dashed, respectively). (d) Relationship between SynEM precision for single 956 

interfaces (synapses) Ps and the ensuing neuron-to-neuron connectome precision 957 

Pnn. Colors as in c. (for inhibitory synapses see also Fig. 5 – figure supplement 1) (e) 958 

Predicted remaining error in the binary connectome (reported as 1-F1 score for 959 

neuron-to-neuron connections) for fully automated synapse classification using 960 

SynEM on 3D EM data from mouse cortex using two different imaging modalities: 961 

ATUM-SEM (left, Kasthuri et al., 2015) and our data using SBEM (right). e,i: 962 

excitatory or inhibitory connectivity model (see b and methods) shown for cre=20% 963 

and cri=60%. Black lines indicate range for varying assumptions of pairwise 964 

connectivity rate cre = (5%, 10%, 30%) (excitatory) and cri = (20%, 40%, 80%) 965 

(inhibitory). Note that SynEM yields a remaining error of close to or less than 2%, 966 

well below expected biological wiring noise, allowing for fully automated synapse 967 

detection in large-scale binary connectomes. See Suppl. Fig. 5 – figure supplement 2 968 

for comparison to previous synapse detection methods. 969 
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Figure 6 971 

Example sparse local cortical connectome obtained using SynEM. (a) 104 axonal (94 972 

excitatory, 10 inhibitory) and 100 dendritic processes within a volume sized 86 x 52 x 973 

86 µm3 from layer 4 of mouse cortex skeletonized using webKnossos (Boergens et 974 

al., 2017), volume segmented using SegEM (Berning et al., 2015). (b) Contactome 975 

reporting total contact area between pre- and postsynaptic processes. (c) Weighted 976 

connectome obtained at the SynEM threshold θnn optimized for the respective 977 

presynaptic type (excitatory, inhibitory) (see Fig 2e, black square, Table 3). (see also 978 

Fig. 6 – figure supplement 1) (d) Binary connectome obtained from the weighted 979 

connectome by thresholding at nn = 1 for excitatory connections and nn = 2 for 980 

inhibitory connections. The resulting predicted neuron-to-neuron recall and precision 981 

were 98%, 98% for excitatory and 98%, 97% for inhibitory connections, respectively 982 

(see Fig. 5e). Green: number of pre- (right) and postsynaptic (bottom) partners for 983 

each neurite. 984 

 985 
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Figure 7 987 

Comparison of synapse size in SBEM data. (a) Distribution of axon-spine interface 988 

area ASI for the SynEM-detected synapses onto spines in the test set from mouse 989 

S1 cortex imaged at 11.24 x 11.24 x 28 nm3 voxel size (see Fig. 3e), purple; and 990 

distributions from de Vivo et al., 2017 in S1 cortex from mice under two wakefulness 991 

conditions (SW: spontaneous wake, EW: enforced wake), imaged at higher 992 

resolution of  5.9 nm (xy plane) with a section thickness of 54.7 ± 4.8 nm (SW), 51.4 993 

± 10.3 nm (EW) (de Vivo et al., 2017). (b) Same distributions as in (a) shown on 994 

natural logarithmic scale (log ASI SynEM -1.60 ± 0.74, n=181; log ASI SW -1.56 ± 995 

0.83, n=839; log ASI EW -1.59 ± 0.81, n=836; mean ± s.d.). Note that the 996 

distributions are indistinguishable (p=0.52 (SynEM vs. SW), p=0.83 (SynEM vs. EW), 997 

two-sample two-tailed t-test), indicating that the size distribution of synapses 998 

detected in our lower-resolution data is representative, and that SynEM does not 999 

have a substantial detection bias towards larger synapses. 1000 
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Features Kreshuk 

et al., 

2011 

Becker 

et al., 

2012 

Init. 

Class. 

Syn

EM 

Parameters N of 

instances

* 

 

Texture:       

Raw data     - 1 

3 EVs of Structure 

Tensor 

    (σw, σd) = {(s,s), (s,2s), (2s,s), 

(2s,2s), (3s,3s)} 

15 

3 EVs of Hessian     σ = {s, 2s, 3s, 4s} 12 

Gaussian Smoothing     σ = {s, 2s, 3s} 3 

Difference of Gaussians     (σ,k) = {(s, 1.5), (s, 2), (2s, 1.5), 

(2s, 2), (3s, 1.5)} 

5 

Laplacian of Gaussian     σ = {s, 2s, 3s, 4s} 4 

Gauss Gradient Magn.     σ = {s, 2s, 3s, 4s, 5s} 5 

Local standard deviation     U = 15x5x5 1 

Int./var.     U = {13x3x3, 15x5x5} 2 

Local entropy     U = 15x5x5 1 

Sphere average     r = {3, 6} 2 

       

Shape:       

Number of voxels     Bo, 160 3 

Diameter (vx based)     Bo 1 

Lengths of principal axes     Bo 3 

Principal axis product     160 1 

Convex hull (vx based)     Bo, 160 3 

 1166 

Table 1 1167 

Overview of the classifier features used in SynEM, and comparison with 1168 

existing methods. 11 3-dimensional texture filters employed at various filter 1169 

parameters given in units of standard deviation (s) of Gaussian filters (s was 1170 

12/11.24 voxels in x and y-dimension and 12/28 voxels in z-dimension, sizes of filters 1171 
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were set to σ/s*ceil(2*s)). When structuring elements were used, 1axbxc refers to a 1172 

matrix of size a x b x c filled with ones and r specifies the semi-principal axes of an 1173 

ellipsoid of length (r, r, r/2) voxels in x, y and z-dimension. All texture features are 1174 

pooled by 9 summary statistics (quantiles (0.25, 0.5, 0.75, 0, 1), mean, variance, 1175 

skewness, kurtosis, respectively) over the 7 subvolumes around the neurite interface 1176 

(see Fig. 2b). Shape features were calculated for three of the subvolumes: border 1177 

(Bo) and the 160 nm distant pre- and postsynaptic volumes (160). Init. Class: initial 1178 

SynEM classifier (see Fig. 3d for performance evaluation). N of instances: number of 1179 

feature instances per subvolume (n=7) and aggregate statistic (n=9). *: Total number 1180 

of employed features is 63 times reported instances for texture features.  For shape 1181 

features, the reported number is the total number of instances used, together yielding 1182 

3224 features total. 1183 
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Rank Feature Parameters Subvolume Aggregate 

statistic 

1 EVs of Struct. Tensor 

(largest) 

σw = 2s, 

σD = s 

160 nm, S1 Median 

2 EVs of Struct. Tensor 

(smallest) 

σw = 2s, 

σD = s 

160 nm, S1 Median 

3 Local entropy U = 15x5x5 160 nm, S2 Variance 

4 Difference of Gaussians σ = 3s, 

k = 1.5 

Border 25th perc 

5 Difference of Gaussians σ = 2s, 

k = 1.5 

Border Median 

6 EVs of Struct. Tensor 

(middle) 

σw = 2s, 

σD = s 

40 nm, S2 Min 

7 Int./var. U = 13x3x3 Border 75th perc 

8 EVs of Struct. Tensor 

(largest) 

σw = 2s, 

σD = s 

80 nm, S1 25th perc 

9 Gauss gradient magnitude σ = s 40 nm, S2 25th perc 

10 Principal axes length (2nd) - Border - 

 1185 

Table 2 1186 

SynEM features ranked by ensemble predictor importance. See Fig. 4b and 1187 

Methods for details. Note that two of the newly introduced features and one of the 1188 

shape features had high classification relevance (Local entropy, Int./var., Principal 1189 

axes length; cf. Table 1). 1190 
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Threshold 

score 

Single synapse Ps/Rs Neuron-to-neuron 

Pnn/Rnn 

  nn = 1 nn = 2 

θs = -1.67 

(exc) 

88.5% / 88.1% 72.5% / 99.7% 98.1% / 95.6% 

θnn = - 0.08 

(exc) 

99.4% / 65.1% 98.5% / 97.1% 100% / 83.4% 

θs = -2.06 

(inh) 

82.1% / 74.9% 77.1% / 100% 92.7% / 99.5% 

θnn = -1.58 

(inh) 

88.6% / 67.8% 84.7% / 99.9% 97.3% / 98.5% 

 1192 

Table 3 1193 

SynEM score thresholds and associated precision and recall. SynEM score 1194 

thresholds θ chosen for optimized single synapse detection (θs) and optimized 1195 

neuron-to-neuron connection detection (θnn) with respective single synapse precision 1196 

(Ps) and recall (Rs) and estimated neuron-to-neuron precision and recall rates (Pnn, 1197 

Rnn, respectively) for connectome binarization thresholds of nn = 1 and nn = 2 (see 1198 

Fig. 5). 1199 

 1200 

  1201 
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FIGURE SUPPLEMENTS 1202 

 1203 
Figure 3 – figure supplement 1 1204 
 1205 
Figure 3 – figure supplement 2 1206 
 1207 
Figure 3 – figure supplement 3 1208 
 1209 
Figure 3 – figure supplement 4 1210 
 1211 
Figure 5 – figure supplement 1 1212 
 1213 
Figure 5 – figure supplement 2 1214 
 1215 
Figure 6 – figure supplement 1 1216 

  1217 



47 of 50 
 

FIGURE SUPPLEMENTS: Legends 1218 

 1219 

Figure 3 – figure supplement 1 1220 

Graphical user interface (implemented in MATLAB) for efficient annotation of neurite 1221 

interfaces as used for generating the training and validation labels. 3D image data is 1222 

centered to the neurite interface and rotated such that the second and third principal 1223 

components of the neurite interface span the displayed image plane. Segments are 1224 

indicated by transparent overlay (interface, red; subsegment S1, blue and S2, 1225 

green). Note that the test labels were independently annotated by volume search by 1226 

multiple experts in webKnossos (Boergens et al., 2017), see Methods. 1227 

 1228 

Figure 3 – figure supplement 2 1229 

Distribution of training, validation and test data volumes within the dataset 1230 

ex145_07x2. Soma locations are indicated by spheres of radius 5 μm. 1231 

 1232 

Figure 3 – figure supplement 3 1233 

Synapse detection performance comparison of SynEM with SyConn (Dorkenwald et 1234 

al., 2017) and (Becker et al., 2012) on the 3D SBEM SynEM test set (Figure 3e). 1235 

Note that while SynEM performs synapse detection and partner detection in one step 1236 

these are separate steps in SyConn with an overall performance that is potentially 1237 

different from the synapse detection step (in Dorkenwald et al., 2017, a reduction in 1238 

performance by 10% in recall and 3% in precision from synapse detection to partner 1239 

detection is reported, yielding a drop in F1 score of 0.057). Becker et al., 2012, does 1240 

not contain a dedicated partner detection step. 1241 

 1242 

Figure 3 – figure supplement 4 1243 

Synapse detection performance comparison of SynEM with VesicleCNN 1244 

(Dorkenwald et al., 2017; Roncal et al., 2015) on a 3D EM dataset from mouse S1 1245 

cortex obtained using ATUM-SEM (Kasthuri et al., 2015). Note that VesicleCNN was 1246 

developed on that ATUM-SEM dataset. 1247 

 1248 
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Figure 5 – figure supplement 1 1249 

Performance of SynEM on a test set containing all interfaces between 3 inhibitory 1250 

axons and all touching neurites (total of 9430 interfaces, 171 synapses). Single 1251 

synapse detection precision and recall (solid line) and the ensuing predicted neuron-1252 

to-neuron precision and recall for inhibitory connections (dashed line) assuming on 1253 

average 6 synapses for connections from interneurons (see Methods). 1254 

 1255 

Figure 5 – figure supplement 2 1256 

Effect of synapse detection errors on predicted connectome error rates for competing 1257 

methods. Predicted neuron-to-neuron errors (reported as (1 - F1 score) in percent) 1258 

for the ATUM-SEM dataset (Kasthuri et al., 2015) using VesicleCNN (Roncal et al., 1259 

2015, orange) and for our SBEM dataset using Becker et al., 2012 (gray) and 1260 

Syconn (Dorkenwald et al., 2017, green). Note that these approaches provide 1261 

synapse detection, only. When including the detection of the synaptic partners, 1262 

Dorkenwald et al., 2017 reported a drop of detection performance by 3% precision 1263 

and 10% recall (indicated by gray crosses, tentatively also for the other approaches). 1264 

SynEM provides synapse detection and partner detection together (compare to Fig. 1265 

5e).  1266 

 1267 

Figure 6 – figure supplement 1 1268 

Procedure for obtaining synapse counts in the local connectome (Fig. 6). (a) 1269 

Segmentation used for SynEM (note that a segmentation biased to neurite splits was 1270 

used, see Berning et al., 2015) and (b) interfaces detected as synaptic (black lines). 1271 

(c) combined skeleton-SegEM segmentation of neurites. (d) Synaptic neurite 1272 

interfaces established between the same pre- and postsynaptic processes (as 1273 

determined by the skeleton-SegEM segmentation, c) were clustered using 1274 

hierarchical clustering with a distance cutoff of d = 1.5 μm (b) for obtaining the final 1275 

synapse count. Scale bar, 500 nm. 1276 
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SUPPLEMENTARY FILES 1278 

 1279 

Supplementary File (Table) 1 1280 

Overview of methods for automated synapse detection. Res. Fac: Image voxel 1281 

volume of SBEM data used in this study relative to the voxel volume in the reported 1282 

studies. Note that most studies employ data of substantially higher image resolution. 1283 

 1284 

Supplementary File (Table) 2 1285 

Number of synapses between connected neurons obtained from published 1286 

studies of paired recordings of excitatory neurons in rodent cortex. These 1287 

distributions were used in Fig. 5 for prediction of connectome precision and recall. 1288 

 1289 

Supplementary File (Table) 3 1290 

Number of synapses between connected neurons obtained from published 1291 

studies of paired recordings of inhibitory neurons in rodent cortex. 1292 

 1293 

Supplementary File 4 1294 

Synapse gallery. Document describing the criteria by which synapses in 3D SBEM 1295 

data were detected by human expert annotators. These criteria are exemplified for 1296 

synapses from the test set of the SynEM classifier. 1297 
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SOURCE DATA FILES 1299 

 1300 
Figure 1 – source data 1 1301 
Source data for plots in panels 1b, 1c 1302 
 1303 
Figure 2 – source data 1 1304 
Source data for plot in panel 2d 1305 
 1306 
Figure 3 – source data 1 1307 
Source data for plots in panels 3a, 3b, 3d, 3e, 3f 1308 
 1309 
Figure 3 – figure supplement 3 – source data 1 1310 
 1311 
Figure 3 – figure supplement 4 – source data 1 1312 
 1313 
Figure 4 – source data 1 1314 
Source data for plot in panel 4b 1315 
 1316 
Figure 5 – source data 1 1317 
Source data for plots in panels 5b, 5c, 5d, 5e 1318 
 1319 
Figure 5 – figure supplement 1 – source data 1 1320 
 1321 
Figure 5 – figure supplement 2 – source data 1 1322 
 1323 
Figure 6 – source data 1 1324 

Source data for plots in panels 6b, 6c, 6d 1325 

Figure 7 – source data 1 1326 

Source data for plots in panels 7a, 7b 1327 
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Figure 3 - figure supplement 1
Staffler et al.

Graphical user interface (implemented in MATLAB) for efficient annotation of neurite 
interfaces as used for generating the training and validation labels. 3D image data is 
centered to the neurite interface and rotated such that the second and third principal 
components of the neurite interface span the displayed image plane. Segments are 
indicated by transparent overlay (interface, red; subsegment S1, blue and S2, green). 
Note that the test labels were independently annotated by volume search by multiple 
experts in webKnossos (Boergens et al., 2017), see Methods.



Figure 3 - figure supplement 2
Staffler et al.
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92 μm
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58 μm

validation volumes
(green) dataset

Distribution of training, validation and test data volumes within the dataset 
ex145_07x2. Soma locations are indicated by spheres of radius 5 μm.



Synapse detection performance comparison of SynEM with SyConn (Dorkenwald et 
al., 2017) and (Becker et al., 2012) on the 3D SBEM SynEM test set (Figure 3e). Note 
that while SynEM performs synapse detection and partner detection in one step these 
are separate steps in SyConn with an overall performance that is potentially different 
from the synapse detection step (in Dorkenwald et al., 2017, a reduction in perfor-
mance by 10% in recall and 3% in precision from synapse detection to partner detec-
tion is reported, yielding a drop in F1 score of 0.057). Becker et al., 2012, does not 
contain a dedicated partner detection step.

Figure 3 - figure supplement 3
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Synapse detection performance comparison of SynEM with VesicleCNN (Roncal et 
al., 2015) on a 3D EM dataset from mouse S1 cortex obtained using ATUM-SEM 
(Kasthuri et al., 2015). Note that VesicleCNN was developed on that ATUM-SEM 
dataset.

Figure 3 - figure supplement 4
Staffler et al.
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Performance of SynEM on a test set containing all interfaces between 3 inhibitory 
axons and all touching neurites (total of 9430 interfaces, 171 synapses). Single
synapse detection precision and recall (solid line) and the ensuing predicted neu-
ron-to-neuron precision and recall for inhibitory connections (dashed line) assuming 
on average 6 synapses for connections from interneurons (see Methods).



Figure 5 - figure supplement 2
Staffler et al.

Effect of synapse detection errors on predicted connectome error rates for competing 
methods. Predicted neuron-to-neuron errors (reported as (1 - F1 score) in percent) for 
the ATUM-SEM dataset (Kasthuri et al., 2015) using VesicleCNN (Roncal et al., 2015, 
orange) and for our SBEM dataset using Becker et al., 2012 (gray) and Syconn (Dor-
kenwald et al., 2017, green). Note that these approaches provide synapse detection, 
only. When including the detection of the synaptic partners, Dorkenwald et al., 2017 
reported a drop of detection performance by 3% precision and 10% recall (indicated 
by gray crosses, tentatively also for the other approaches). SynEM provides synapse 
detection and partner detection together (compare to Fig. 5e). 
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Figure 6 - figure supplement 1
Staffler et al.

Procedure for obtaining synapse counts in the local connectome (Fig. 6). (a) Segmen-
tation used for SynEM (note that a segmentation biased to neurite splits was used, 
see Berning et al., 2015) and (b) interfaces detected as synaptic (black lines). (c) 
combined skeleton-SegEM segmentation of neurites. (d) Synaptic neurite interfaces 
established between the same pre- and postsynaptic processes (as determined by the 
skeleton-SegEM segmentation, c) were clustered using hierarchical clustering with a 
distance cutoff of d = 1.5 μm (b) for obtaining the final synapse count. Scale bar, 500 
nm.
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