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INTRODUCTION: The brain ofmammals consists
of an enormously dense network of neuronal
wires: the axons and dendrites of nerve cells.
Their packing density is so high that light-
based imaging methods have so far only been
able to resolve a very small fraction of nerve
cells and their interaction sites, the synapses, in
mammalian cortex. Recent advances in three-
dimensional (3D) electron microscopy allow
researchers to image every nerve cell and all
chemical synapses in a given piece of brain tissue,
opening up the possibility of mapping neuronal
networks densely, not just sparsely. Although
there have been substantial advances in imaging
speed, the analysis of such 3D image data is still
the limiting step. Therefore, dense reconstruc-

tions of cortical tissue have thus far been lim-
ited to femtoliter-scale volumes, keeping the
systematic analysis of axons, neuronal cell bodies
and their dendrites of different types, and the
dense connectome between them out of reach.

RATIONALE: Image analysis has made decisive
progress using artificial intelligence–basedmeth-
ods, but the resulting reconstructions of dense
nerve tissue are still too error-prone to be
scientifically meaningful as is. To address this,
human data analysis has been integrated into
the generation of connectomes and it is the ef-
ficiency of this human–machine data analysis
that now determines progress in connectomics.
We therefore focused on efficiency gains by: (i)

improving the automated segmentation qual-
ity, (ii) analyzing the automated segmentation
for locations of likely errors and directing
the human work to these locations only, and
(iii) optimizing human data interaction by
helping annotators to immediately understand

the problem to be solved,
allowing fast, in-browser
parallel data flight, and
byminimizing latency be-
tween annotator queries.
With this, close to 100 stu-
dent annotators solved

hundreds of thousands of reconstruction prob-
lems within just 29 s each, including all pre-
paration and transition time.

RESULTS:We reconstructed 2.7 m of neuronal
wires densely in layer 4 of mouse somatosen-
sory cortexwithin only ~4000 invested human
workhours, yielding a reconstruction~300 times
larger than previous dense cortical reconstruc-
tions at ~20-fold increased efficiency, a leap
for the dense reconstruction of connectomes.
The resulting connectome between 6979 pre-
synaptic and 3719 postsynaptic neurites with
at least 10 synapses each, comprising 153,171
synapses total, was then analyzed for the dense
circuit structure in the cerebral cortex. We
found that connectomic data alone allowed
the definition of inhibitory axon types that
showed established principles of synaptic spec-
ificity for subcellular postsynaptic compartments,
but that at scales beyond ~5 mm, geometric
predictability of the circuit structure was low
and coarser models of random wiring needed
to be rejected for dense cortical neuropil. A gra-
dient of thalamocortical synapse density along
the cortical axis yielded an enhanced variabil-
ity of synaptic input composition at the level of
single L4 cell dendrites. Finally, we quantified
connectomic imprints consistent with Hebbian
synaptic weight adaptation, obtaining upper
bounds for the fraction of the circuit that could
have undergone long-term potentiation.

CONCLUSION: By leveraging human–machine
interaction for connectomic analysis of neuro-
nal tissue, we acquired the largest connectome
from the cerebral cortex to date. Using these
data for connectomic cell-type definition and
the mapping of upper bounds for the learned
circuit fraction, we establish an approach for
connectomic phenotyping of local dense neu-
ronal circuitry in the mammalian cortex,
opening the possibility for the connectomic
screening of nervous tissue from various cor-
tices, layers, species, developmental stages, sen-
sory experience, and disease conditions.▪
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Dense reconstruction of ~500,000 cubic micrometers of cortical tissue yielding 2.7 m of neuronal cables
(~3% shown, front) implementing a connectome of ~400,000 synapses between 34,221 axons and 11,400
postsynaptic processes (fraction shown, back). These data were used for connectomic cell-type definition,
geometrical circuit analysis, and measurement of the possible plastic fraction (the “learnedness”) of the circuit.
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The dense circuit structure of mammalian cerebral cortex is still unknown. With developments in
three-dimensional electron microscopy, the imaging of sizable volumes of neuropil has become
possible, but dense reconstruction of connectomes is the limiting step. We reconstructed a volume
of ~500,000 cubic micrometers from layer 4 of mouse barrel cortex, ~300 times larger than previous dense
reconstructions from the mammalian cerebral cortex. The connectomic data allowed the extraction of
inhibitory and excitatory neuron subtypes that were not predictable from geometric information. We
quantified connectomic imprints consistent with Hebbian synaptic weight adaptation, which yielded upper
bounds for the fraction of the circuit consistent with saturated long-term potentiation. These data establish
an approach for the locally dense connectomic phenotyping of neuronal circuitry in the mammalian cortex.

T
he cerebral cortex of mammals houses
an enormously complex intercellular
interaction network implemented with
neuronal processes that are long and
thin, branching, and extremely densely

packed. Early estimates indicated that 4 km
of axons and 400 m of dendrites are com-
pressed into a cubic millimeter of cortical
tissue (1). This high packing density of cellular
processes has made the locally dense mapping
of neuronal networks in the cerebral cortex
challenging.
So far, reconstructions of cortical tissue have

been either sparse (2–7) or restricted to small
volumes of up to 1500 mm3 (8–10). Conse-
quently, the detailed network architecture of
the cerebral cortex is unknown. Particular
open questions are to what degree local neu-
ronal circuits are explainable by geometric
rules alone (1, 2, 11–13) and on which spatial
scales cortical connectivity is only explainable
by innervation preferences beyond such geo-
metric models (5, 8, 9, 14, 15). Similarly, al-
though numerous cortical neuronal cell types
have been described based on protein expres-
sion, morphology, and electrophysiological
characteristics (16), and these have been shown
to have particular synaptic target patterns (17),
the inverse question—whether, at the level of
the dense cortical circuit, axons represent a
continuum of synaptic preference or a set of
distinct innervation paradigms that would
allow for a purely connectomic cell type defi-
nition [as has been successful in the retina

(18, 19)]—is still open. Next, at the level of syn-
aptic input to the primary dendrites of cortical
excitatory cells, it is not known whether the
typically three to 10 primary dendrites of a
cortical neuron that leave the cell body homo-
geneously sample the available excitatory and
inhibitory synaptic inputs or if there is an en-
hanced heterogeneity of synaptic input com-
position, making it possible to exploit the
numerous mechanisms that have been dis-
cussed for the nonlinear integration of local
synaptic inputs (20–23). Finally, whereas the
change of synaptic weights in response to
electrical and sensory stimulation has been
widely studied (24–28) and connectomic data
consistent with LTP have been described
(29, 30), the fraction of a given cortical circuit
that is plausibly shaped by processes related to
Hebbian learning under undisturbed condi-
tions is still unknown.
We used dense connectomic reconstruction

to quantitatively address these questions about
the formational principles of a dense cortical
circuit.

Results

We acquired a three-dimensional (3D) EM
dataset from upper layer 4 of primary somato-
sensory cortex of a 28-day-old mouse (Fig. 1, A
to D, likely located within a barrel, see sup-
plementary materials) using serial block-face
electron microscopy [SBEM (31); dataset size:
61.8 × 94.8 × 92.6 mm3; voxel size: 11.24 × 11.24 ×
28 nm3]. For dense reconstruction (Fig. 1, E
to H), we 3D aligned the images and applied
a sequence of automated analyses [SegEM
(32), SynEM (33), ConnectEM, and TypeEM;
Fig. 2, supplementary materials and methods,
and table S2], followed by focused manual an-
notation (FocusEM). We reconstructed 89 neu-
rons that had their cell body in the dataset

(Fig. 1, E and F). These neurons constituted
only 2.6% of the total path length (69 mm;
Fig. 1G). To reconstruct axons, which consti-
tute most of the wiring in the dense circuit
(1.79 m, 66.6%, Fig. 1H), we applied a scalable
distributed annotation strategy that identified
locations of uncertainty in the automated re-
construction, which were then resolved by
targeted manual annotation. To reduce the
required manual annotation time, it was crit-
ical to obtain an automated reconstruction
with low error rates, to use efficient algo-
rithms for identifying locations for focused
manual inspection (queries), and to minimize
the time spent per user query. For this (Fig.
2A), we developed artificial intelligence–based
algorithms that evaluated the EM image data
and convolutional neural network (CNN)–
filtered versions of the image data in the sur-
rounding of interjunctions between segmented
pieces of neurites (Fig. 2B). Together with
classifiers that computed the probability of
volume segments belonging to an axon, a
dendrite, a spine head, or a glial process
(using, among others, shape features; Fig. 2C),
this allowed us to automatically connect parts
of dendrites, attach spine heads to dendritic
shafts (by a greedy stepwise agglomeration
initiated at the spine head, Fig. 2D; 58.9% of
spine heads unaffected by the dataset bound-
ary were automatically attached), and recon-
struct parts of axons. Similarly, synapses were
automatically detected by evaluating pre- and
postsynaptic volumes at neurite interfaces
[Fig. 2E and figs. S2 to S5 (33); for shaft
synapses, additional CNN-based classifiers
for vesicle clouds andmitochondriawere used].
Tomanually correct remaining errors in axons
(Fig. 2, F to H), we detected ending locations
of automatically reconstructed axon pieces
(Fig. 2F) and directed user queries to these
locations. For this, we used an egocentric 3D
image display mode [“flight mode,” Fig. 2G
(34)] and oriented the user annotation along
the axis of the neurite for which a local an-
notation (“query”) was requested (movie S2).
Together with data preloading, this yielded
a low-latency, targeted neurite annotation in
which individual user queries took 29.4 s to re-
solve (traveled path length per query: 5.49 mm).
These queries could be easily distributed among
87 annotators. Similarly, we detected loca-
tions of likely mergers between axons (Fig.
2H, “chiasmata”) and directed user queries
to reconnect the chiasma exits along actual
axons. Using this scalable annotation archi-
tecture, we obtained a dense reconstruction
of 2.69m of neuronal processes (Fig. 1, G and
H) with a total investment of 3981 human
work hours, ~10 times faster than a recent
dense reconstruction in the fly larval brain
(35) (Fig. 2, I and J), ~20 times faster than the
previous dense reconstruction in the mamma-
lian retina (18), and ~25 times faster than the
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previous dense reconstruction in mammalian
cortex (9) (Fig. 2, I and J). To quantify re-
maining reconstruction error rates in this dense
neuropil reconstruction, we measured the re-
maining errors in a set of 10 randomly chosen
axons and found 12.8 errors per millimeter of
path length (of these, there were 8.7 conti-
nuity errors per millimeter; see materials and
methods). This is indistinguishable from the
error rates previously found in fast human an-
notations (18, 34, 36).
We obtained a connectome (Fig. 3) between

34,221 presynaptic axonal processes and 11,400
postsynaptic processes [6979 × 3719 connec-
tivity matrix (Fig. 3E) when restricted to those
pre- and postsynaptic neurites that estab-
lished at least 10 synapses]. Among the post-
synaptic processes, we classified n = 169 apical
dendrites (ADs) that traversed the dataset
along the cortical axis without connection to
one of the neuronal cell bodies in the dataset
(Fig. 2A), 246 smooth dendrites (SDs, Fig. 2B),

80 somata, 116 axon initial segments (AISs;
Fig. 2C), and 89 proximal dendrite (PD) trees
connected to a soma in the dataset (movie S1;
note that some of these neurons also had ADs
that were classified as PDs and not included in
the AD definition above; see materials and
methods and tables S1 and S2).

Connectomic definition of axon types

We investigated whether, based solely on
connectomic information (Fig. 3), we could
extract the rules of subcellular innervation
preference described for inhibitory axons in
the mammalian cortex (17) and if such syn-
aptic target preference could also be found
for excitatory axons. We first measured the
preference of each axon for innervating den-
dritic spine heads versus dendritic shafts and
other targets (Fig. 4, A and B) because, in the
mammalian cortex, most axons of inhibitory
interneurons (INs) preferentially innervate
the dendrites’ shafts or neuronal somata (17)

and most excitatory glutamatergic axons
preferentially innervate the spine heads of
dendrites (1). The fraction of primary spine
synapses per axon (out of all synapses of that
axon) accordingly allowed the identification
of spine-preferring, likely excitatory axons
with at least 50% primary spine innervations
(n = 5894 axons) and shaft-preferring, likely
inhibitory axons with <20% primary spine
innervations (n = 893 axons, or 13.2% of all
axons; for exceptions to this rule and control
measurements, see the supplementary mate-
rials and tables S1 and S2).
We then determined for each of the sub-

cellular synaptic target classes defined above
(Figs. 3 and 4C) the per-synapse innervation
probability that would best explain whether
an inhibitory axon establishes at least one
synapse onto each of these targets. These in-
hibitory “single-hit” binomial innervation prob-
abilities were 4.2% (somata), 17.8% (PD), 4.9%
(SD), 3.3% (AD), and 0.5% (AIS) (Fig. 4D). We
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Fig. 1. Dense connectomic reconstruction of cortical neuropil from layer 4 of mouse primary somatosensory cortex. (A to D) Location [(A), red] of the 3D EM
dataset (B). WM, white matter. High-resolution example images are shown in (C) and (D). Asterisks indicate examples of dendritic spines. Direct links to data browser
webKnossos are as follows: https://wklink.org/9276 (B), https://wklink.org/7101 (C), and https://wklink.org/8906 (D). (E) Reconstruction of n = 89 neurons with a
cell body and dendrites in the dataset. (F) Three spiny neurons (SpNs) and two INs (see movie S1). (G) Quantification of circuit components in the dense reconstruction. Most
of the circuit path length (total: 2.69 m) is contributed by nonproximal axons (1.79 m, 66.6%), spine necks (0.55 m, 20.5%), and dendritic shafts (0.28 m, 10.3%) not
connected to any cell body in the volume. (H) Display of all 34,221 reconstructed axons contained in the dataset. Scale bars in (D) are as in (C); scale bar in (F) is 10 mm.
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https://webknossos.org/datasets/MPI_Brain_Research/2012-09-28_ex145_07x2_ROI2017/view#2844,4316,1840,0,14.421
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https://webknossos.org/datasets/MPI_Brain_Research/2012-09-28_ex145_07x2_ROI2017/view#3137,6449,1630,0,0.736


then computed the expected distribution of
synapses per axonmade onto each target class
assuming the double-hit, triple-hit, etc., inner-
vation probabilities are the same as the prob-
ability to establish at least one synapse onto
that target. When comparing these target dis-

tributions with the measured distributions of
synapses per axon onto each target class (Fig.
4E), we found that inhibitory axons estab-
lished enhanced preference for somata (p =
2.4 × 10−34, n = 893, one-sided Kolmogorov–
Smirnov test), PDs (p = 6.0 × 10−77), ADs (p =

2.5 × 10−4), and to a lesser degree for SDs
(p = 1.7 × 10−3, table S1), but no enhanced
preference for AISs in L4 (p = 0.648). AISs
were synaptically innervated by 0.172 input
synapses per micrometer of AIS length, but
these innervations were not made by axons
with an enhanced preference for AISs, unlike
in supragranular and infragranular layers (37).
When performing the same analysis for ex-

citatory axons (Fig. 4F), we found clear target
preference for ADs (p = 2.5 × 10−34, Fig. 4F),
SDs (p = 7.6 × 10−25), and PDs (p = 1.3 × 10−169).
By contrast, thalamocortical (TC) axons [de-
tected using the criteria reported in (38); see
fig. S6 and materials and methods] indicated
a target preference for PDs (p = 2.5 × 10−31),
but not for ADs (p = 0.019) or SDs (p = 0.723).
To determine the fraction of inhibitory and ex-
citatory axons that had an unexpectedly high
synaptic preference for one (ormultiple) of the
subcellular target classes, we applied the false
detection rate criterion used for the determi-
nation of significantly expressed genes [q
value (39); see materials and methods] and
obtained lower bounds on the fractions of
axons in the tissue that preferentially inner-
vate the various subcellular target classes (Fig.
4G; at least 58.0% of inhibitory and 24.4% of
excitatory axons). Inhibitory axons (Fig. 4H),
but not excitatory axons (Fig. 4I), showed
higher-order innervation preferences, indi-
cating that at the level of the dense cortical cir-
cuit, synaptic target preferences established by
axons were not a continuum but allowed cell-
type classification without the need for mea-
surements of neuronal morphology, electrical
activity, protein expression, or transcription
levels.

Geometric sources of synaptic innervations

Could these local connectivity rules have been
derived solely from the geometry of axons
and dendrites? We first quantified the overall
relation between the spatial distribution of
axons and dendrites and the establishment
of synapses between them (Fig. 5). One para-
digm, originally proposed by Peters (11), states
that TC axons entering a certain cortical tissue
volume would sample the available cortical
dendrites for synaptic innervation according
to their relative prevalence in the tissue (1).
This model (Fig. 5A) predicted the TC inner-
vation of most cortical dendrites rather well,
with the exception of smooth dendrites [an
exception reported by White et al. (14)] and
the enhanced TC innervation of PDs of layer
4 cells (21). When applied to corticortical ex-
citatory and inhibitory axons (Fig. 5A), we
found that this model predicted excitatory
innervation of most spiny dendrites rather
well, but again failed to predict innervation
of SDs and the proximal bias of inhibitory
synapses. Because this model [which has
been most widely used for circuit inference
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Fig. 2. Methods for the efficient dense connectomic reconstruction. (A) Simplified diagram of reconstruction
steps [fig. S1, detailed in (B) to (H)]. wh, annotation work hours. (B) ConnectEM classifier for combining
neurite pieces from the CNN-based volume segmentation (32): at junctions of volume segments (bottom right),
raw data, CNN, and shape features were evaluated. (C) TypeEM classifier for assigning cellular identity to
volume segments: the probability of axons, dendrites, spine heads, and glial processes was evaluated.
Shown is an illustration of spine head (purple) and astrocyte (cyan) classification; one of the 985 features
is illustrated (segment thickness). Numbers indicate the probability of the segment being a spine head.
Precision and recall of spine head detection were 92.6 and 94.4%, respectively. (D) Process for automatically
attaching spine heads to the dendritic shaft by stepwise agglomeration of volume segments along the
highest-probability transition between neighboring segments [according to the ConnectEM score (B)]. An
example of six neighboring spine heads that were all automatically attached is shown. In total, 58.9% of
spine heads were automatically attached (A). (E) Automated detection of spine and shaft synapses [here,
vesicle clouds (green) and mitochondria (blue) were detected and used as additional features for the
SynEM (33) classifier]. (F to H) Focused annotation strategy for directing human annotation queries (Q)
to ending locations of the automatically reconstructed axon pieces [(F), blue], oriented along the axon’s
main axis [traced in webKnossos using flight mode (G {34}), yielding flight paths of 5.5 ± 8.8 mm length
(21.3 ± 36.1 s per ending annotation, n = 242,271, movie S2)]. Neurite mergers (H) were detected as
“chiasmatic” configurations, and queries (Q) directed from the exits of the chiasma toward its center
were used to determine correct neurite continuities (fig. S1). (I and J) Quantification of circuit size and
invested work hours for dense circuit reconstructions in connectomics and resulting order-of-magnitude
improvement provided by FocusEM compared with previous dense reconstructions (m). Fish o.b., zebrafish
olfactory bulb (59); M. retina, mouse retina IPL (18); Fly larva, mushroom body in larval stage of
D. melanogaster (35); M. cortex, mouse somatosensory cortex [(9) and this study (magenta)]. Only
completed dense reconstructions were included in the comparison.
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Fig. 3. Postsynaptic target classes and dense cortical connectome. (A to D)
Display of all ADs [(A), magnified one-AD bundle (left) and top view in tangential plane
illustrating AD bundles], SDs [(B), magnification inset illustrating low rate of spines],
AISs (C), and their respective path length and spine density distributions (D). Note that
spine density is underestimated by ~20% (table S1). (E) Display of connectome
between all axons (n = 6979) and postsynaptic targets (n = 3719) in the volume with at

least 10 synapses each, establishing a total of 153,171 synapses (of 388,554 synapses
detected in the volume). For the definition of postsynaptic target classes, see (A) to
(D); for the definition of presynaptic axon classes, see Fig. 4 and fig. S6. AISs with
fewer than 10 input synapses are also shown. SOM, neuronal somata; Note that
some of these PD dendrites are L4 ADs not included in the AD definition above.
Asterisks indicate remaining unassigned axons.
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(2, 12)] implicitly accounts for the density of
synapses along the presynaptic axons, it was
capable of capturing the increased synapse
density of TC axons (Fig. 5A). A simpler var-
iant of the Peters model (1, 15) (Fig. 5B), which
uses the density of pre- and postsynaptic path
length as basis for the synaptic innervation
prediction, failed at predicting the TC inner-
vation but captured the corticocortical inner-
vation of spiny dendrites (Fig. 5B). We then
analyzed whether a Peters model normalized
for postsynaptic synapse density (Fig. 5C) would
better capture synaptic innervation and found
that, in fact, the dendritic model was a far
better predictor of synaptic innervation (com-
pare Fig. 5, C and B). This indicated that SDs
and ADs sampled synaptic input according
to the relative path length of the presynaptic
axons (Fig. 5C). We then investigated whether
a Peters model accounting for pre- and post-
synaptic synapse densities would improve the
innervation prediction (Fig. 5D). In this mod-
el, both the output and the input of cortical
excitatory neurites were properly predicted,
but the suppressed innervation of SDs and
ADs by TC axons and the proximal bias of
inhibitory axons was not. Notably, none of
the Peters models could account for this
proximal bias of inhibitory synapses [Fig.
5D; for other failures of Peters predictions, see,
e.g., (3, 6, 8, 9)].
More recently, the Peters model has been

investigated for the close proximity between
axons and dendrites on the scale of few micro-
meters (8, 9) and concluded poor (8) or absent
(9) geometric predictability of synaptic inner-
vation.We used our larger dense reconstruction
to investigate the geometric prediction over a
substantially broader spatial scale from 1 to
~30 mm and accounted for inhibitory axons,
excitatory axons, and postsynaptic target types
(Fig. 5, E to H). We measured whether the
postsynaptic membrane surface available with-
in a certain radius rpred around a given axon
(Fig. 5E) would be a predictor of synaptic
innervation for that given axon. We measured
the available membrane surface belonging to
the five subcellular target classes around all
6979 axons (Fig. 5F) and used a linear multi-
nomial regression model to predict synaptic
innervation from these data (Fig. 5G). Then,
we computed the coefficient of determination
(R2) reporting the fraction of axonal synaptic
innervation variance that could be explained
purely based on the geometrical information
(Fig. 5H; for details, see the materials and
methods). In fact, for small spatial scales of
1 to 5 mm, the membrane surface available
around an axon was a rather good predictor
of synaptic innervation from excitatory axons
(range, 16 to 90%, Fig. 5H; less so for inhibitory
axons: range, 23 to 79%).
Would this imply that axonal and dendritic

proximity at the single-axon level can be used
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Fig. 4. Connectomic definition of axon classes. (A) Example axons with high (top) and low (bottom) fraction
of output synapses made onto dendritic spines. (B) Distribution of spine-targeting fraction over all n = 6979 axons;
dashed lines indicate thresholds applied to distinguish non-spine-preferring, likely inhibitory axons (<20% spine
innervation, n = 893, 12.8% of all axons) from spine-preferring, mostly excitatory axons (>50% spine innervation,
n = 5,894, 84.5%). Diagram shows the definition of primary spine innervations. (C to I) Connectomic definition
of axon classes by preferential synaptic innervation of subcellular targets. (C) Two example axons innervating
three somata [left, n = 6 synapses onto somata (S) of 14 total, arrows] and an AD (right, n = 2 synapses onto
AD of 13 total), respectively. All other cell bodies and ADs are shown in gray. (D) Fraction of synapses onto
somata, PDs, ADs, SDs, and AISs for all axons. Binomial probabilities are shown over axons to establish at least
one synapse onto the respective target (arrows: magenta, excitatory; black, inhibitory). Black lines indicate the
average over axons. (E) Comparison of predicted synapse fraction onto target classes per inhibitory axon on
the basis of the binomial probability to innervate the target at least once [gray shading; see arrows in (D)]
and measured distribution of synapse fractions onto targets (black lines). (F) Same as (E) but for excitatory
axons. (G) Fraction of target-preferring excitatory (Exc.) and inhibitory (Inh.) axons identified using the false
detection rate criterion [q = 5 to 30% (39)]. Colored bars indicate the distribution for q = 5% (left) and
q = 30% (right). Mixed colors indicate axons specific for both somata and PDs. [(H) and (I)] Second-order
innervation preference by target-specific axons; numbers indicate fractional innervation by remaining
synapses per axon; colors indicate underfrequent (black) or overfrequent (blue) innervation. Diagonal entries
are the fraction of synapses onto the same target (black boxes).
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to infer synaptic connectivity in the cortex
(13)? We found that for the spatial alignment
scales that can be achieved in light-microscopy–
based neuron reconstructions from multiple
animals (10 to 20 mm), predictability dropped
substantially (Fig. 5H), making circuit infer-
ence by an emulation of growth processes
based on light-microscopically aligned data
(13, 40) implausible.

Subcellular synapse placement

We used our dense reconstruction to study the
spatial distribution of synapses along somata
and dendrites in the cortical neuropil. The den-
sity of TC synapses had a substantial depen-
dence on cortex depth (Fig. 6, A to D): the
absolute density of TC synapses in the volume
increased by ~93% over 50 mm cortex depth
(Fig. 6, A and B); the TC excitatory synapse
fraction TC/(TC+CC) (where CC is cortico-
cortical) increased by 82.6%, corresponding
to an absolute increase in the TC synapse
fraction of 5.8% per 50 mm cortex depth (Fig.
6D). This gradient was consistent with light-
microscopic analyses of TC synapses indicat-
ing a decrease of TC synapse density from
lower to upper L4 (41). Neither the inhibi-
tory nor the corticocortical excitatory synapse
densities showed a comparable spatial profile
(Fig. 6C).
How is the synaptic TC gradient mapped

onto the dendrites of L4 neurons along the
cortex axis (Fig. 6, E to G)? One possibility is
that the TC synapse gradient is used to en-
hance the variability of synaptic input compo-
sition between different primary dendrites of
the L4 neurons such that a neuron’s dendrites
pointing upward toward the pia would sample
relatively less TC input than dendrites point-
ing toward the white matter. Alternatively,
mechanisms to establish synaptic target pre-
ference (such as those reported in Fig. 4) could
be used to counterbalance this synaptic gra-
dient and equilibrate the synaptic input frac-
tions on the differently oriented dendrites.
Our analysis showed that, in fact, even at the
level of single primary dendrites, TC input
fractions were 1.28-fold higher for dendrites
pointing upward toward the cortical surface
versus downward toward the white matter
(Fig. 6, F and G; TC input fractions of each
dendrite were corrected for the entire neu-
ron’s TC input fraction; for this analysis, see
the materials and methods). We then investi-
gated whether this differential composition of
the excitatory inputs is accompanied by dif-
ferent compositions of the inhibitory input
synapses (Fig. 6, H to L). We found that the
fraction of TC input to a neuron’s dendrites
was anticorrelated to the fraction of inhibitory
synapses that originated from AD-preferring
inhibitory axons (Figs. 6I and 4), both at the
level of the input to L4 neurons and at the
level of single primary dendrites of L4 neurons
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Fig. 5. Contribution of neurite geometry and membrane availability to cortical wiring. (A to D) Quantitative
test of various formulations of Peters’ rule: comparison of actual synaptic innervation to the prediction of
synaptic innervation on the basis of the availability of postsynaptic path length in the dataset (A), the product
of pre- and postsynaptic path length (B), the sampling of presynaptic partners by their relative prevalence (C), and
the product of pre- and postsynaptic synapse density (D). Log likelihood ratios were as follows: –1.1×103

(A), –11×103 (C), and –12×103 (D), all compared with the simple model in (B); p < 10−14 (corrected for degrees
of freedom). (E to H) Prediction of single-axon synaptic target preference by distance-dependent postsynaptic
surface sampling. (E) Diagram of the surface area of the various subcellular postsynaptic target classes (colors)
within a distance rpred from a given axon (black) and example surfaces around two axons within a prediction
radius rpred = 5 mm. (F) Surface fraction of target classes around all n = 6979 axons in dependence of rpred around
axons. Colors indicate the fraction of synapses of a given axon actually innervating the respective target.
(G) Relationship between the surface fraction around all axons and synaptic innervation by these axons for
each target (rpred = 10 mm). Black lines indicate linear regression for geometrical innervation prediction. (H) R2

reporting the fraction of synaptic innervation variance [over all axons; see (G)] explained by a multivariate linear
innervation model using the available postsynaptic surface area around axons [shaded areas: red, excitatory
axons (Exc.); blue, inhibitory axons (Inh.)]; lower end of shades indicates prediction; upper ends indicate correction
by the variance contributed by the multinomial sampling of targets along axons; solid lines represent direct
prediction of innervation from surface fraction. Dashed lines indicate modeled prediction for a purely geometric
forward model at rpred = 10 mm. Insets (right) show sampling-corrected predictive power of excitatory (top) and
inhibitory (bottom) axons for the innervation of target classes.
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(Fig. 6, I and J). The effect was absent for
all other synapse classes, most notably the
soma-preferring inhibitory axons (Fig. 6K; see
discussion).

Connectomic mapping of the
plasticity-consistent circuit fraction

The concept of Hebbian plasticity, thought to
be at the core of experience-dependent changes
of synaptic weights in the brain, makes pre-
dictions about the temporal evolution of syn-

aptic weights in multiple synaptic contacts
between the samepre- andpostsynaptic neurons
(AADD joint synapses; Fig. 7, A and B): Because
Hebbian synaptic plasticity is dependent on
the electrical activity of the pre- and postsyn-
aptic neurons, which in a first approximation
can be assumed to be similar at joint synapses,
long-term potentiation (LTP) predicts joint
synapses to become stronger and relatively
more similar in weight (especially if synaptic
weight saturates) and long-term depression

(LTD) predicts joint synapses to becomeweaker
and relatively more dissimilar in weight (but
more similar if synapticweights saturate; Fig. 7A).
Models of LTP and LTD thus make particular
predictions about the temporal evolution of
joint synaptic weights, and the mapping of
synaptic weights and synaptic weight sim-
ilarity in the connectome allows the quan-
tification of upper bounds on the fraction
of the circuit that can have undergone such
particular patterns of weight change be-
fore the connectomic experiment (we denote
those synapse pairs for which such patterns
of weight change occurred to a sufficient
degree as “having undergone LTP/LTD”; see
discussion).
We set out to leverage our large connecto-

mic dataset (n = 5290 excitatory joint synaptic
pairs onto spines; Fig. 7C) to map the relation
between synaptic size and synaptic size sim-
ilarity in joint synapse pairs [Fig. 7E; for vis-
ualization, the figure reports relative synaptic
size dissimilarity on the x-axis; for the utiliza-
tion of the axon–spine interface area (Fig. 7D)
as an indicator of synaptic weight (42, 43)].
These data would allow us to determine upper
bounds on the plasticity-consistent fraction of
the circuit beyond the previous finding that in
joint synapse pairs, synaptic size is more sim-
ilar than for randomly shuffled synapse pairs
(9, 29, 30, 44).
Synaptic size similarity in joint synapse

pairs showed a broad distribution (Fig. 7E).
When comparing this distribution with the
synaptic size and synaptic size similarity dis-
tribution obtained from a random assignment
of the same synapses into “random pairs” (Fig.
7F and fig. S7, C and D), we observed that the
population of oversimilar synapse pairs (Fig.
7F) was split into a region of oversimilar and
large synapses (mean synaptic size 0.23 to
1.19 mm2; 16 to 20% of all joint synapse pairs
are found in this region; the above-random
synapse pairs constitute 3.6 to 3.9% of all joint
synapse pairs; see fig. S7, C and D, and the
materials and methods for details of the re-
gion definition and statistics), and oversimilar
and small synapses (mean synaptic size 0.06
to 0.2 mm2; 15 to 19% of all joint synapse
pairs were found in this region; 3.0 to 3.4%
of all joint synapse pairs were above random
in this region). With this information, we ob-
tained upper bounds on the fraction of the
circuit that can have undergone LTP and
LTD with weight saturation (compare Fig. 7,
F and A).
To what degree was the observed syn-

aptic weight similarity a result of subtypes
of neurons establishing differently sized syn-
apses? Although the quantification of the
upper bounds of the plasticity-consistent cir-
cuit fraction would remain unaffected, we
could use this more detailed analysis to un-
derstand whether the plasticity-consistent
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Fig. 6. Gradient of TC synapse density in L4 and ensuing variability of synaptic input composition in L4
neurons. (A to D) Distribution of TC synapses within the L4 dataset (A): gradient along the cortical axis (B), which is
absent for inhibitory (yellow) or CC (blue) synapses (C). (D) Resulting gradient in TC synapse fraction [increase
by 83% from 7.0 to 12.8% (+5.8%) within 50 mm along the cortical axis; line fit, p < 1.1 × 10−12, n = 134,537
synapses]. (E to G) Analysis of the variability of TC input onto the primary dendrites of neurons possibly resulting
from the TC synapse gradient (D): example reconstructions (E) aligned to the somata; (F) fraction of excitatory
input synapses originating from TC axons evaluated for each primary dendrite, plotted according to the direction of
the dendrite relative to cortical axis (–1, aligned toward pia; +1, aligned toward WM). TC input fraction [TC/(TC+CC)]
of each dendrite compared with the TC input fraction of its entire parent neuron (ratios shown). (G) Summary
analysis of relation between dendrite direction and relative TC input fraction showing that the TC input fraction is
determined by the dendrites’ orientation relative to the cortex axis (1.28-fold higher relative TC fraction for
downward- than upward-pointing dendrites, n = 183, p = 0.026, two-sided t test for dendrites with a normalized
absolute projection >0.5; bars correspond to ranges –1 to –0.5; –0.5 to 0.5; and 0.5 to 1). (H to K) Enhanced
TC synaptic input (red spheres) is correlated to reduced inhibitory input from AD-preferring inhibitory axons (purple
spheres and arrows in H) at the level of single dendrites (r = –0.24, p = 0.0095, n = 183, Pearson’s correlation
after Bonferroni’s correction) and for neurons [(J), r = –0.27, p = 0.01, n = 84], but not soma-preferring inhibitory
axons [green in (H) and (K), r = 0.08, p = 0.49, n = 84].
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Fig. 7. Connectomic mapping of the plasticity-consistent circuit fraction.
(A) Hebbian LTP makes predictions about the temporal evolution of synaptic size
and size similarity in AADD synapse pairs (green; insets show example model
trajectories of synapse pairs exposed to LTP with and without weight saturation),
yielding a region in the size-similarity plane (right) where synaptic pairs that have
undergone LTP are predicted to be found (colors in right panel as in temporal plots
on the left). For Hebbian LTD, pairs of synapses behave accordingly only if synaptic
size saturates at low values (red). Arrows indicate trajectories of synapse pairs
with randomly drawn initial size that undergo LTP with (dark green) or without
(light green) weight saturation; LTD with (red) and without (pink and yellow indicate
linear and exponential decay, respectively) weight saturation. (B) Example AADD
synapse pair (arrows) onto dendritic spines between the same axon (blue) and same
dendrite (red). Direct links to datasets are as follows: https://wklink.org/3356
(synapse 1) and https://wklink.org/6145 (synapse 2). (C) Frequency of joint
synapse pairs in the dataset (n = 5290 spine–synapse pairs, shaded, analyzed
here). (D) ASI as a representative measure of synapse weight (42, 43), dataset link
https://wklink.org/5780 (E) Distribution of mean synaptic size and synaptic size

similarity for all pairs of AADD synapses from excitatory axons; each dot
corresponds to one synapse pair. Isolines indicate statistical regions defined
in (F). (F) Map of the relation between synaptic size and synaptic size similarity in
AADD pairs, reported as the difference of (E) to random synapse pairs (fig. S7, C and
D). Isolines indicate significance levels (p = 0.05 and 0.005 for outer and
inner isolines, respectively) outlining overfrequency of synapse pairs that are
similar in size and large (upper area) and similar in size and small (lower area).
(G andH) Analysis of AADd and AaDD synapse pairs that would indicate a contribution of
cell-type-dependent connection size differences. No oversimilarity can be found
in these cases (H). (I) Analysis as in (E) and (F) but for TC connections. Note upper
bound of 16% of connections consistent with stabilized LTP. (J) Summary of fraction
of synapse pairs that resided in the regions identified in (F) and (I) as upper
bounds (for the interaction between the two upper bounds, see the supplementary
materials). Numbers indicate the ranges for different significance thresholds [see (F)
and (I) and fig. S7, C and D]. (K) Analysis as in (G) and (H) but for CC-to-L4
neuron connections only, refuting subtypes of CC connections as the source of the
observed oversimilarity (see fig. S7, A and B). Image width is 2 mm in (B) and (D).
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circuit fractions were specific to types of neu-
ronal connections.
First, we considered the possibility that cer-

tain presynaptic cell types made consistently
larger or consistently smaller synapses (Fig.
7G). In this case, the distribution of synaptic
weight similarity for same-axon different-
dendrite (AADd) synapse pairs would also
show a bias toward more similarly sized syn-
apses. However, we found no such evidence
(Fig. 7H), excluding cell-type-specific synapse
size of either presynaptic (axonal) or postsyn-
aptic (dendritic) origin as the cause of the
observed oversimilar synapse pairs.
Next, we separated those connections estab-

lished by TC axons from those made by the
remaining excitatory (i.e., CC) axons (Fig. 7I
and fig. S7, A and B). We found an excess of
oversimilar synapse pairs in the TC connec-
tions as well, with 7 to 16% of pairs found in a
region of overly similar and large synapses
(i.e., an upper bound of 16% on LTP). The
region of overly similar and small synapse
pairs, however, only comprised 2 to 7% of joint
synapse pairs. This remaining number of over-
ly similar small synapse pairs could in fact be
induced by the overly similar large synapse
pairs (see the supplementary materials). At
28 days of age, ~3 weeks after the proposed
critical period during which LTP can be in-
duced in TC connections (45, 46), a fraction
of up to 16% of joint synapse pairs was still
consistent with previous episodes of LTP that
led to stabilized potentiated synapse pairs at
dendritic spines (47, 48), but 84% were not.
Repeating these analyses for other combi-

nations of pre- and postsynaptic neurite types
(Fig. 7J), we found upper bounds for LTP and
LTD of ~10 to 20%. For each of these subtype-
specific connections, we could then again ana-
lyze whether any purely presynaptic or purely
postsynaptic subtype within the already type-
selected connections (corresponding to squares
in the table of Fig. 7J) could be the cause of
the observed synapse similarity. For exam-
ple, the connections from corticortical axons
onto spiny L4 neurons (49) showed no evi-
dence for presynaptic axonal subtypes yielding
oversimilar synapses (Fig. 7K; for additional
controls of these findings, see the supplemen-
tary materials; fig. S7, A and B; and table S1).
Together, these results provided a first quan-

titative upper bound on the fraction of the
circuit consistent with previous episodes of
saturated Hebbian synaptic plasticity leading
to strengthening or weakening of synapses
(a “connectomic fingerprint” of the maximum
possible plasticity fraction of the circuit) and
excluded obvious cell-type-based connection
strength differences as the origin of these ob-
servations. Because these results were obtained
from brains of untrained animals and were
not the result of electrical or other stimula-
tion (“plasticity induction”), these data may

represent an unbiased screening of upper
bounds of plasticity traces in local cortical cir-
cuits, for which the dense connectomic map-
ping was essential.

Discussion

Using FocusEM, we obtained the first dense
circuit reconstruction from the mammalian
cerebral cortex at a scale that allowed the
analysis of axonal patterns of subcellular inner-
vation, ~300 times larger than previous dense
reconstructions from cortex (9). Inhibitory
axon types preferentially innervating cer-
tain postsynaptic subcellular compartments
could be defined solely on the basis of connec-
tomic information (Figs. 3 and 4). In addition
to inhibitory axons, a fraction of excitatory
axons also exhibited such subcellular inner-
vation preferences (Fig. 4). The geometrical
arrangement of axons and dendrites explained
only a moderate fraction of synaptic inner-
vation, revoking coarse randommodels of cor-
tical wiring (Fig. 5). A substantial TC synapse
gradient in L4 gave rise to an enhanced het-
erogeneity of synaptic input composition at
the level of single cortical dendrites (Fig. 6),
which was accompanied by a reduced inner-
vation from AD-preferring inhibitory inputs.
The consistency of synapse size between pairs
of axons and dendrites signified fractions of
the circuit consistent with saturated synaptic
plasticity, placing an upper bound on the
“learned” fractionof the circuit (Fig. 7). FocusEM
allowed the dense mapping of circuits in the
cerebral cortex at a throughput that enables
connectomic screening.

Synaptic input composition along L4 dendrites

Our finding of a covariation of enhanced TC
inputs to L4 excitatory cells with reduced direct
inhibitory input fromAD-preferring INs (Fig. 6,
H to K) could be interpreted in the context of
a disinhibitory circuit described previously
(50, 51). Taking into account the preferential
targeting of ADs and of soma-preferring parv-
albumin (PV)–positive INs by somatostatin
(SST)–positive INs, this could imply that SST-
IN–based disinhibition can enhance TC input
by silencing perisomatic PV inputs recruited
by feedforward inhibition (52) and concom-
itantly reducing the direct inhibitory compo-
nent from SST INs. In any case, this finding
of per-dendrite input variation points to a
circuit configuration in which TC input var-
iability is enhanced between neurons of the
same excitatory type in cortical layer 4, and
furthermore provides evidence for a per-
dendrite synaptic input composition of en-
hanced heterogeneity.

Connectomic traces of plasticity

We interpreted the joint synapse data (Fig. 7)
in terms of upper bounds of synapse pairs that
could have undergone certain models of plas-

ticity. Although this analysis detects those syn-
apse pairs that were exposed to saturating
plasticity (i.e., the possible plasticity event led
to a final weight state of both synapses), an
alternative interpretation is a dynamic circuit
in which at any given point in time, only a
fraction of synapses has expressed saturated
plasticity, whereas other (or all) synapses are
in the process of undergoing plastic changes.
We expect that more elaborate plasticity models
of entire circuits will also make testable predic-
tions that are accessible by connectomic snap-
shot experiments as shown here.

Outlook

The presented methods and results open the
path to the connectomic screening of ner-
vous tissue from various cortices, layers,
species, developmental stages, sensory exper-
iences, and disease conditions. The fact that
even a small piece of mammalian cortical neu-
ropil contains a high density of relevant in-
formation so rich as to allow the extraction of
possible connectomic signatures of the “learned-
ness” of the circuit makes this approach a
promising endeavor for the study of the struc-
tural setup of mammalian nervous systems.

Materials and Methods
Animal experiments

A wild-type (C57BL/6) male mouse was trans-
cardially perfused at postnatal day 28 under
isoflurane anesthesia using a solution of 2.5%
paraformaldehyde and 1.25% glutaraldehyde
(pH 7.4) following the protocol in (53). All
procedures followed the animal experiment
regulations of the Max Planck Society and
were approved by the local animal welfare
authorities (Regierungspräsidien Oberbayern
and Darmstadt).

Tissue sampling and staining

The brain was removed from the skull after
48 hours of fixation and sliced coronally using
a vibratome. Two samples were extracted
using a 1-mm biopsy punch (Integra Miltex,
Plainsboro, NJ) from a 1-mm-thick slice 5 mm
from the front of the brain targeted to layer 4
in the somatosensory cortex of the right hemi-
sphere. The corresponding tissue from the left
hemisphere was further sliced into 70-mm-
thick slices followed by cytochrome oxidase
staining, indicating the location of the coro-
nal slice to be in barrel cortex.
Next, the extracted tissue was stained as

described previously (53). Briefly, the tissue
was immersed in a reduced osmium tetroxide
solution (2% OsO4, 0.15 M CB, 2.5 M KFeCN),
followed by a 1% thiocarbohydrazide step and
a 2% OsO4 step for amplification. After an
overnight wash, the sample was further in-
cubated with 1.5% uranyl acetate solution and
a 0.02 M lead(II) nitrate solution. The sample
was dehydrated with propylene oxide and
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EtOH, embedded in Epon Hard (Serva Elec-
trophoresis GmbH, Germany), and hardened
for 48 hours at 60°C.

3D electron microscopy experiment

The embedded sample was placed on an alu-
minum stub and trimmed such that the tissue
was directly exposed on all four sides of the
sample. The sides of the sample were covered
with gold in a sputter coater (Leica Micro-
systems, Wetzlar, Germany). Then, the sample
was placed into an SBEMsetup [(31),Magellan
scanning electron microscope, FEI Company,
Hillsboro, OR, equipped with a custom-built
microtome courtesy of W. Denk]. The sample
was oriented so that the radial cortex axis was
in the cutting plane. The transition between
L4 and L5A was identified in overview elec-
tron microscopy (EM) images by the sudden
drop in soma density between the two layers
(Fig. 1C). A region of size 96 × 64 mm2within L4
was selected for imaging using a 3 × 3 image
mosaic, a pixel size of 11.24 × 11.24 nm2, an
image acquisition rate of 10 MHz, a nominal
beam current of 3.2 nA (thus anominal electron
dose of 15.8 e–/nm2), an acceleration voltage of
2.5 kV, and anominal cutting thickness of 28 nm.
The effective data rate, including overhead time
spent during motor movements for cutting
and tiling, was 0.9MB/s. A total of 3420 image
planes were acquired, yielding 194 GB of data.

Image alignment

After 3D EM dataset acquisition, all images
were inspected manually and marked for im-
aging artifacts caused by debris present on
the sample surface during imaging. Images
with debris artifacts were replaced by the im-
ages at the same mosaic position from the
previous or subsequent plane. First, rigid
translation-only alignment was performed
based on the procedures in (53). The following
modifications were applied. When shift vec-
tors were obtained that yielded offsets of >100
pixels, these errors were iteratively corrected
by manually reducing the weight of the cor-
responding entry in the least-squares relaxa-
tion by a factor of 1000 until the highest
remaining residual error was <10 pixels. Shift
calculation of subsequent images in cutting
direction was found to be the most reliable
measurement and was therefore weighted
3-fold in the weighted least-squares relaxa-
tion. The resulting shift vectors were applied
(shift by integer voxel numbers) and the 3D
image data were written in KNOSSOS format
(34, 36). For further improvement, subimage
alignmentwas applied (see the supplementary
materials and methods).

Methods description for software code

All routines described in the following are
available as software at https://gitlab.mpcdf.
mpg.de/connectomics/L4dense, which is the

relevant reference for the exact sequence of
processing steps applied. The following descrip-
tions and the more detailed ones in the sup-
plementary materials and methods are aimed
at pointing to the key algorithmic steps rather
than enumerating all detailed computations.

Workflow for dense circuit reconstruction

The workflow for volume reconstruction of
the acquired 3D EM volume (Fig. 2 and fig. S1)
was as follows. We first detected blood vessels
and cell bodies using automated heuristics,
and then processed the remaining image vol-
ume usingmachine-learning-based image seg-
mentation [CNN and watershed as described
in SegEM (32)]. The result of this processing
was 15 million volume segments correspond-
ing to pieces of axons, dendrites, and somata
(volume: 0.0295 ± 0.3846 mm3, mean ± SD).
We then constructed the neighborhood graph
between all these volume segments and com-
puted the properties of interfaces between di-
rectly adjacent volume segments. On the basis
of these features, we trained a connectivity
classifier (ConnectEM; Fig. 2, A and B) to de-
termine whether two segments should be con-
nected (along an axon or a dendrite or a glial
cell) or if they should be disconnected. Using
the SynEM classifier (33), we determined
whether an interface between two discon-
nected processes corresponded to a chemical
synapse and, if so, which was the presynaptic
and which was the postsynaptic neurite seg-
ment (see below for more details). We further-
more trained a set of classifiers (TypeEM; Fig.
2C) to compute for each volume segment the
probability of being part of an axon, a den-
drite, a spine head, or a glia cell (precision and
recall were 91.8 and 92.9% for axons, 95.3 and
90.7% for dendrites, 97.2 and 85.9% for astro-
cytes, and 92.6 and 94.4% for spine heads,
respectively; see table S2).

Cell body–based neuron reconstruction

We next reconstructed those neurons that had
their cell bodies in the tissue volume (Fig. 1, E
and F, cell gallery in movie S1; n = 125 cell
bodies; of these, 97 were neuronal and of these
97, 89 were reconstructed with dendrites in
the dataset). For this, we used a set of simple
growth rules for automatically connecting
neurite pieces on the basis of the segment-
to-segment neighborhood graph and the con-
nectivity and neurite type classifiers (fig. S1,
“automated agglomeration”; see the supple-
mentary materials and methods). As a result,
we obtained fully automated reconstructions
of the neuron’s soma and dendritic processes.
With a minimal additional manual correction
investment of 9.7 hours for 89 cells (54.5 mm
dendritic and 2.1 mm axonal path length), the
dendritic shafts of these neurons could be re-
constructed without merge errors, but there
were 37 remaining split errors, at 87.3% den-

dritic length recall (table S2). This reconstruc-
tion efficiency compares favorably to recent
reports of automated segmentation of neu-
rons in 3D EM data from the bird brain ob-
tained at ~2-fold higher imaging resolution
(54), which reports soma-based neuron recon-
struction at an error rate of beyond 100 errors
per 66 mm dendritic shafts at lower (68%)
dendritic length recall with a similar resource
investment (see the supplementary materials
and methods).
In addition to the dendritic shafts, the den-

dritic spines constitute a major fraction of the
dendritic path length in cortical neuropil (Fig.
1G). Using our spine head classifier (part of the
TypeEM classifiers; Fig. 2C), we found 415,797
spine heads in the tissue volume, which is a
density of 0.784 per mm3 (0.98 per mm3 of neu-
ropil, when excluding somata and blood ves-
sels). To connect these to the corresponding
dendritic shafts, we trained a spine neck con-
tinuity algorithm that was able to automati-
cally attach 58.9% of these spines (evaluated in
the center of the dataset at least 10 mm from
the dataset border), yielding a dendritic spine
density of 0.672 per mm dendritic shaft length
[comparable to spine densities in the bird
brain (55)]. However, in mammalian cerebral
cortex, the density of spines along dendrites is
even higher (at least 1 per mm dendritic shaft
length). The remaining spine heads were then
attached to their dendritic shafts by seeding
manual reconstructions at the spine heads
and asking annotators to continue along the
spine necks to the dendritic shafts. This an-
notation was performed in the “orthogonal
mode” configuration of webKnossos (34), in
which the annotator viewed three orthogonal
image planes to decide where to continue the
respective spine neck [as in KNOSSOS (36)].
The annotation of all remaining spine necks
consumed an additional 900 hours of human
work for the attachment of 98,221 spines,
resulting in a final overall spine density of
0.959 per mm dendritic shaft length.

Dense tissue reconstruction

The reconstruction of neurons starting from
their cell bodies, however, was not the main
challenge. Rather, the remaining processes,
axons and dendrites not connected to a cell
body within the dataset and densely packed
in the tissue constitute ~97% of the total neu-
ronal path length in this volume of cortex
(Fig. 1G). To reconstruct this vast majority of
neurites (Fig. 1H), we first used our connec-
tivity and neurite type classifiers (ConnectEM
and TypeEM, respectively; Fig. 2) to combine
neurite pieces into larger dendritic and axonal
agglomerates (“automated agglomeration,” fig.
S1 and supplementary materials andmethods).
Then, we took those agglomerates that had a
length of at least 5 mm (n = 74,074 axon ag-
glomerates), detected their endings that were
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not at the dataset border, and directed focused
human annotation to these endings (“queries,”
Fig. 2, F and G).
For human annotation, we used an egocen-

tric directed 3D image data view (“flight mode”
in webKnossos), which we had previously found
to provide maximized human reconstruction
speed along axons and dendrites in cortex (34).
Here, however, instead of asking human anno-
tators to reconstruct entire dendrites or axons,
we only queried their judgment at the endings
of automatically reconstructed neurite parts.
To make these queries efficient, we made
three additions to webKnossos: (i) we oriented
the user along the estimated direction of the
neurite at its ending, reducing the time the
user needs to orient within the 3D brain tis-
sue; (ii) we dynamically stopped the user’s flight
along the axon or dendrite whenever another
of the already reconstructed neurite agglomer-
ates had been reached; and (iii) we preloaded
the next query while the user was annotating
(Fig. 2, F and G). Movie S2 illustrates this an-
notation process for cases of splits andmergers,
respectively. Note that the user was able to
switch quickly to the next query and, based on
its 3D orientation, spent little time orienting
in the tissue at the new location. With this, the
average user interaction time was 21.3 ± 36.1 s
per query, corresponding to an average of 5.5 ±
8.8 mm traveled per query. In total, 242,271
axon-ending queries consumed 1978 paid-out
work hours (i.e., including all overheads, 29.4 s
per query).
However, we had to account for a second

kind of reconstruction error, so-called mergers,
which can originate from the original segmen-
tation, the agglomeration procedure, or erro-
neous flight paths from human queries (Fig.
2H). To detect such mergers, we started with
the notion that most of these merger locations
will yield a peculiar geometrical arrangement
of a 4-fold neurite intersection once all neurite
breaks have been corrected (Fig. 2H, “chiasma”).
Because such chiasmatic configurations occur
rarely in branchingneurites, we directed human
focused annotation to these locations. First,
we automatically detected these chiasmatic
locations using a simple heuristic to detect
locations at which axon-centered spheres inter-
sected more than three times with the axon
[Fig. 2H, n = 55,161 chiasmata; for approaches
to detect such locations by machine learning,
see (56, 57)]. Then, we positioned the user
queries at a certain distance from the chiasma
location pointing inward (Fig. 2H) and used
a set of case distinctions to query a given chi-
asma until its configuration had been resolved
(see the supplementary materials and meth-
ods for details). Chiasma annotation con-
sumed an additional 1132 work hours [note
that the detection of endings and chiasmata
was iterated eight times for axons (see the
supplementary materials and methods) and

that, in a final step, we also detected and que-
ried 3-fold neurite configurations to remove
remaining mergers].

Synapse detection, types of postsynaptic
targets, and connectome reconstruction

Given the reconstructed pre- and postsynaptic
neurites in the tissue volume, we thenwent on
to extract their connectome. For this, we used
SynEM (33) to detect synapses between the
axonal presynaptic processes and the post-
synaptic neurites (Fig. 2E).
We trained a dedicated interface classifier

for nonspine synapses using training data
containing only shaft and soma synapses
(Figs. S2 to S5; see the supplementary
material and methods). This classifier also
used four additional texture filters compared
with SynEM in (33), which originated from
the voxelwise predictions of a multiclass
CNN trained on synaptic junctions, vesicle
clouds, mitochondria, and a background class
(Fig. 2E).
Because we were interested in analyzing the

subcellular specificity of neuronal innervation,
we had to also classify which of the postsynap-
tic membranes belonged to cell bodies; to
classify spiny dendrites as belonging to ex-
citatory cells and smooth dendrites as be-
longing to INs; and to detect AISs and those
dendrites that were likely ADs of neurons
located in deeper cortical layers. We devel-
oped semiautomated heuristics to detect these
subcellular compartments (Fig. 3, A to D; see
the supplementary materials and methods
for details).

Definition of excitatory and inhibitory axons

We used the fraction of primary spine synap-
ses per axon (out of all synapses of that axon,
only axons with at least 5 mm path length and
at least 10 synapses were analyzed), which had
a peak at ~80% (Fig. 4, A and B), to identify
spine-preferring, likely excitatory axons with
at least 50% primary spine innervations. Sim-
ilarly, we identified shaft-preferring, likely
inhibitory axons with <20% primary spine
innervations. Together, this yielded 6449 axons
with clear shaft or spine preferences. For the
remaining n = 528 axons with primary spine
innervations >20% and <50%, we first wanted
to exclude remaining mergers between excit-
atory and inhibitory axons (that would yield
intermediate spine innervation rates) and split
these axons at possible merger locations (at
least 3-fold intersections). Of these, 338 now
had at least 10 synapses and spine innerva-
tion rates <20% or >50%. The remaining n =
192 axons (2.75% of all axons with at least
10 synapses) were not included in the following
analyses. This together yielded n = 5894 ex-
citatory and n = 893 inhibitory axons in our
data. For additional controls, see the supple-
mentary materials.

TC axons were defined following parame-
ters described previously (38) (see the supple-
mentary materials and methods).

Analysis of subcellular synaptic target preference

First, we assumed that all synapses of a given
axon class have the same probability to in-
nervate a particular postsynaptic target class
(as above). We then inferred this single-hit
innervation rate for all combinations of pre-
synaptic axon classes and postsynaptic target
classes by determining the probability that
best explains whether an axon innervated the
target class under a binomial model. The opti-
mized binomial model was then used toge-
ther with themeasured number of synapses of
each axon to calculate the expected distribu-
tion of target innervation rates. A one-sided
Kolmogorov–Smirnov test was used to search
for the existence of a subpopulation with an
increased target innervation rate. To identify
those axons that innervated a given target
class beyond chance (Fig. 4G), we computed
the probability p(t)meas,i,k of finding at least the
measured fraction of synapses onto target t
for each axon i from axon class k. The p values
were also calculated for the expected distri-
bution of target innervation rates and com-
bined with p(t)meas,i,k to estimate the p-value
threshold p̂(t)k at which the false discovery
rate q (39) crosses 20%. Eighty percent of
the axons with p(t)meas,i,k < p̂(t)k innervate
target t with a rate above the single-hit in-
nervation probability and are thus considered
to be t preferring.
For the analysis of second-order innervation

preference (Fig. 4, H and I), we reported the
fraction of synapses onto target t by t-preferring
axons of class k after removal of synapses onto
t. This innervation rate was compared against
the fraction of synapses onto target t by all
axons of class k.

Geometrical predictability analysis

Peters’ rule (1) stipulates that synapses be-
tween classes of axons and dendrites are es-
tablished in proportion to the prevalence of
these classes. One variant of Peters’ rule con-
sidered (Fig. 5B) makes the prediction that the
fraction of synapses from axon class A onto
target class T is the product of pA and qT,
where pA is the proportion of axonal path
length made up by class A, and qT is the pro-
portion of dendritic path length (excluding
spines) made up by class T. The measured
synapse fractions were compared against the
predictions by calculating the ratio of ob-
served to predicted synapse fractions.
Other formulations evaluate these predic-

tions independently for each axon class (Fig.
5A) or each dendrite class (Fig. 5C).
Finally, to assess the effect of incorporating

explicit knowledge about the synapse den-
sities of different axon and dendrite classes,
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a fourth variant of Peters’ rule (Fig. 5D) was
considered in which the predicted synapse
fraction from axon class A onto target class T is
the product of p′A and q′T, the overall fractions
of synapses originating from A and innervat-
ing T, respectively.
How much additional information about

the neuropil composition around an axon
helps to predict its postsynaptic targets was
assessed as follows. For each axon, we deter-
mined the total surface area of the target
classes that were contained within the cylin-
der of radius rpred around the axon (Fig. 5E)
and compared it with the actually innervated
target fraction of each axon (Fig. 5, E and F).
We then analyzed the correlation between
the availability of the target surfaces and the
established synapses on these target classes
(Fig. 5G).
We then computed R2 using the following

model. For all axons of a given type, we used
the fraction of target innervations and frac-
tional surface availabilities in a surround of
radius rpred to find the optimal multivariate
linear regression parameters. To estimate
best-case geometric predictability, we then
calculated R2 as 1 minus the ratio between the
squared residuals of the regression and the
synaptic variance on the same axons used for
parameter optimization. Here, we corrected for
the variance introduced by the finite number
of synapses per axon: we used the axons’
fractional surface availabilities within rpred
and absolute synapse numbers to calculate the
expected binomial variance and subtracted
it from the squared residuals.
This analysismade several assumptions that

were in favor of a geometrical explanation of
synaptic innervation [therefore, the conclusions
about a minimal predictability (Fig. 5H) are
still upper-bound estimates]. It was assumed
that the number of synapses for a given axon
was already known; in most settings, only
average synapse rates are known for a given
circuit. It also assumed that a precise knowl-
edge of the axonal trajectory and the surround-
ing target surface fractions were available;
again, this is usually only available as an aver-
age on the scale of rpred of several tens of
micrometers.
To relax the assumption of complete knowl-

edge about target availabilities, we repeated
the above R2 analysis for a model in which
the predicted fractional innervation of a tar-
get is the fractional surface availability of
that target.
The computational routine used can be found

at https://gitlab.mpcdf.mpg.de/connectomics/
L4dense in +connectEM/+Connectome/
plotGeometricPredictability.m.

Synapse-size consistency analysis

To determine the consistency of primary spine
synapses between a given axon–dendrite pair,

we calculated the axon–spine interface area
(ASI) (42, 43) of a synapse as the total contact
area between the corresponding axon and
spine head agglomerates. For axon–dendrite
pairs connected by exactly two primary spine
synapses, we then calculated the coefficient
of variation (CV) of the ASI areas by CV =
21/2(ASI1 – ASI2)/(ASI1 + ASI2), where ASI1
and ASI2 are the larger and smaller of the two
ASI areas, respectively. To avoid false same-axon,
same-dendrite (AADD) pairs caused by remain-
ing merge errors in the axon reconstruction,
this analysis was performed only after splitting
axons at their branch points. The measured
distribution of CV valueswas compared against
the CV values obtained by randomly drawing
pairs from all AADD synapses and against the
CV values of observed AADd synapse pairs
and pairs from different axons onto the same
dendrite (AaDD) and from different axons
onto different dendrites (AaDd; Fig. 7H). To
test whether AADD primary spine synapse
pairs are more similar in size than pairs in the
control conditions, a one-sided Kolmogorov–
Smirnov test was used. We calculated the
decimal logarithm of the average ASI area (in
square micrometers) and the CV of the ASI
areas of each synapse pair to map the size-
similarity plane (Fig. 7, F and I). The kernel
density estimate of the observed distribution
was compared against the distribution ex-
pected from random pairs (5000 Monte Carlo
samples; fig. S7C) to identify statistically sig-
nificantly overrepresented regions. Contour
lines show the intersection of the significance
regions for p-value thresholds of 0.5% and 5%
(Fig. 7, E, F, I, and fig. S7, C and D), with the
convex hull around the set of all data points.
The fraction of data points contained within a
contour was used as the upper bound on the
fraction of connections consistent with sat-
urated Hebbian plasticity (Fig. 7J).

Statistical methods

The following statistical tests were performed
(in order of presentation in the figures):
The existence of axon subpopulation with

unexpectedly high synapse rate onto a given
target class was tested using the one-sided
Kolmogorov–Smirnov test (Fig. 4, E and F).
Axons belonging to a given target-preference
class were identified on the basis of the false
detection rate criterion [q = 20% (39)] (Fig. 4G).
The degree to which synaptic variance is

explainable by geometry-based models was
evaluated using R2 (Fig. 5H). Binomial vari-
ance was corrected for by subtracting the
surface fraction-based expected binomial var-
iance from the squared residuals.
F tests were used to evaluate synaptic gra-

dients as function of cortical depth (Fig. 6, B
and D) or dendritic orientation (Fig. 6, F and
G). For correlation of the TC input fraction
with other synaptic input fractions along den-

drites, the inhibitory input fraction and seven
target-preferential inhibitory and excitatory
synapse types were tested. AD-preferring in-
hibitory synapses were the only ones with sig-
nificant and substantial correlation (Pearson’s
correlation after Bonferroni’s correction for
n = 8 multiple tests). The correlation was
also significant at the soma level (Pearson’s
correlation). Both correlations were also sig-
nificant using Spearman’s rank correlation.
The four variants of Peters’ rule (Fig. 5, A to

D) were compared using a likelihood-ratio test
based on the following multinomial model. It
was assumed that the pre- and postsynaptic
classes of each synapse in the connectome
were sampled either after the path-length frac-
tions of these classes (pA and qT) or after the
product of the path length and a class-specific
likelihood-maximizing relative synapse den-
sity. Wilks’ theorem was used to compute the
corresponding p values.
To test whether the axon–spine interface

areas of a given spine–synapse pair configu-
ration were more similar than randomly sam-
pled pairs, a one-sided Kolmogorov–Smirnov
test was used (Fig. 7, H and K).
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Dense connectomic reconstruction in layer 4 of the somatosensory cortex
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Brain anatomy revealed in startling detail
The mammalian cerebral cortex is an enormously complex network of neuronal processes that are long and thin,
branching, and extremely densely packed. This high packing density has made the reconstruction of cortical
neuronal networks challenging. Motta et al. used advanced automated imaging and analysis tools to reconstruct
with high spatial resolution the morphological features of 89 neurons and their connections in the mouse barrel
cortex. The reconstruction covered an area more than two orders of magnitude larger than earlier neuroanatomical
mapping attempts. This approach revealed information about the connectivity of inhibitory and excitatory synapses of
corticocortical as well as excitatory thalamocortical connections.
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