
Brain Algorithms and Circuits Group
Gregor Schuhknecht
+++ New Research Group starting December 2025 +++
To survive and succeed in the world, animals have evolved rich behavioral repertoires that enable them, for example, to navigate their surroundings, detect and classify relevant objects, locate conspecifics, pursue prey, and avoid predators. To be able to execute such behaviors, the brain must continuously solve a range of complex computational problems – such as filtering relevant signals from noisy sensory input, integrating information across modalities, assigning valence to different stimuli (e.g., conspecifics vs. predators), tracking changes in a dynamic environment, and selecting the best possible actions under uncertainty or different internal states.
The research interest of the Brain Algorithms and Circuits Group is to study the computational algorithms that the brain uses to enable flexible behaviors and to understand how these algorithms are embedded in the synaptic circuitry of the vertebrate brain. We study these questions in the larval zebrafish, a small vertebrate with a transparent brain that displays a rich repertoire of robust, innate behaviors. To dissect the underlying neuronal circuits, our lab uses a comprehensive battery of experimental methods, including optical tools (functional imaging and optogenetics), electrophysiology, and connectomics. This enables us to study neuronal circuits across many scales, from synapse to behavior.
Questions that are of interest to us include:
- How can we infer the computational algorithms used by the zebrafish brain from studying behavior?
- How does the synaptic circuitry of the zebrafish brain implement these computational algorithms?
- How do the biophysical properties of neurons and of synapses contribute to these computations?
The experimental methods we employ to tackle these questions include:
- Behavioral experiments in larval zebrafish
- Functional imaging and optogenetic manipulations during sensorimotor processing
- Whole-cell patch-clamp electrophysiology
- Connectomic circuit analyses (in collaborations with the Department of Moritz Helmstaedter)
- Computational modeling of neurons and networks
Selected Publications
DOI Boulanger-Weill J*, Kämpf F*, Schuhknecht GFP*, et al. (2025) Correlative light and electron microscopy reveals the fine circuit structure underlying evidence accumulation in larval zebrafish. bioRxiv.
DOI Barabási DL*, Schuhknecht GFP*, Engert F (2024) Functional neuronal circuits emerge in the absence of developmental activity. Nat. Comm.
DOI Holler S, Köstinger G, Martin KAC, Schuhknecht GFP•, Stratford KJ (2021) Structure and function of a neocortical synapse. Nature.
Open Positions
Graduate students (m/f/d)
We are currently hiring graduate students with backgrounds in a STEM field and a strong interest in experimental systems neuroscience. Positions will be available starting December 1st, 2025.
Postdoctoral fellow (m/f/d)
We have an opening for a highly motivated postdoctoral fellow with a strong background in an experimental discipline in neuroscience. The position will be available starting December 1st, 2025.
Bachelor and master projects (m/f/d)
We have openings for interested master and bachelor students who wish to do their lab rotations or write their theses in the Brain Algorithms and Circuits Group.
Interested candidates should email their CV and a short cover letter to Gregor Schuhknecht.





